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Preface

The idea of signals and systems arises in different disciplines such as science,
engineering, economics, politics, and medicine. Most students of electrical and com-
puter engineering will deal with signals and systems in their professional life. This is
why a course on signals and systems is an important part of most engineering curricula.

Some books on signals and systems are designed for a two-semester course
sequence. Unfortunately, the field of electrical engineering has changed consider-
ably and its curriculum is so crowded that there is no room for a two-semester course
on signals and systems. This book is designed for a three-hour semester course on
signals and systems. It is intended as a textbook for junior-level students in electrical
and computer engineering curricula. The prerequisites for a course based on this
book are knowledge of standard mathematics (including calculus and differential
equations) and electric circuit analysis.

This book intends to present continuous-time and discrete-time signals and sys-
tems to electrical and computer engineering students in a manner that is clearer,
more interesting, and easier to understand than other texts. This objective is achieved
in the following ways:

*  We have included several features to help students feel at home with the
subject. Each chapter opens with a historical profile or career talk. This is
followed by an introduction that links the chapter with the previous chap-
ters and states the chapter objectives. The chapter ends with a summary of
key points and formulas.

* All principles are presented in a lucid, logical, step-by-step manner. As
much as possible, we have avoided wordiness and giving too much detail
that could hide concepts and impede overall understanding of the material.

* Thoroughly worked examples are liberally given at the end of every sec-
tion. The examples are regarded as part of the text and are clearly explained
without asking the reader to fill in missing steps. They give students a good
understanding of the solution and the confidence to solve problems them-
selves. Some of the problems are solved in two or three ways to facilitate an
understanding and a comparison of different approaches.

» To give students practice opportunity, each illustrative example is imme-
diately followed by a practice problem along with its answer. Students can
follow the example step by step to solve the practice problem without flip-
ping pages or looking at the end of the book for answers. The practice prob-
lems are also intended to test if students understand the preceding example.
It will reinforce their grasp on the material before they move on to the next
section.

» Toward the end of each chapter, we discuss some application aspects of
the concepts covered in the chapter. The material covered in the chapter is
applied to at least one or two practical problems or devices. This helps the
students see how the concepts are applied to real-life situations.

xiii
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e Ten review questions in the form of multiple-choice objective items are pro-
vided at the end of each chapter with answers. The review questions are
intended to cover the little “tricks” that the examples and end-of-chapter
problems may not cover. They serve as a self-test device and help students
determine how well they have mastered the chapter.

In recognition of the requirements by ABET (Accreditation Board for Engineering
and Technology) on integrating computer tools, the use of MATLAB® is encour-
aged in a student-friendly manner. We have introduced MATLAB in Appendix C
and applied it gradually throughout this book. MATLAB has become a standard
software package in electrical engineering curricula. To avoid confusing learning
MATLAB with the main subject (signals and systems), we have delayed MATLAB
till the end of each chapter.

Matthew N.O. Sadiku
Warsame H. Ali

MATLAB® is a registered trademark of The MathWorks, Inc. For product informa-
tion, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098, USA
Tel: 508-647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com
Web: www.mathworks.com


http://www.mathworks.com
mailto:info@mathworks.com

Acknowledgments

We are indebted to Dr. Sudarshan Nelatury at the Penn State University at Erie, who
provided us with a lot of end-of-chapter problems. We thank Dr. Saroj Biswas of
Temple University, Philadelphia, for helping with MATLAB. Special thanks to our
colleagues Drs. Siew Koay, Lijun Qian, and Annamalai Annamalai, who reviewed
the manuscript, and to our graduate students, Mamatha Gowda, Savitha Gowda,
Tekena Abibo, and Mahamadou Tembely, for going over the manuscript and point-
ing out some errors. We are also grateful to Dr. Pamela Obiomon, the interim head
of the Department of Electrical and Computer Engineering, and Dr. Kendall Harris,
the dean of the College of Engineering, for providing a sound academic environment
at Prairie View A&M University, Prairie View, Texas.

Finally, we express our profound gratitude to our wives and children, without
whose cooperation this project would have been difficult if not impossible. We
appreciate feedback from students, professors, and other users of this book. We can
be reached at sadiku@ieee.org and whali@pvamu.edu.

XV


mailto:sadiku@ieee.org
mailto:whali@pvamu.edu

This page intentionally left blank



Authors

Dr. Matthew N.O. Sadiku received his BSc in 1978 from Ahmadu Bello University,
Zaria, Nigeria, and his MSc and PhD from Tennessee Technological University,
Cookeville, Tennessee, in 1982 and 1984, respectively. From 1984 to 1988, he
was an assistant professor at Florida Atlantic University, where he did gradu-
ate work in computer science. From 1988 to 2000, he was at Temple University,
Philadelphia, Pennsylvania, where he became a full professor. From 2000 to 2002,
he worked with Lucent/Avaya, Holmdel, New Jersey, as a system engineer and with
Boeing Satellite Systems as a senior scientist. At present, he is a professor at Prairie
View A&M University.

He is the author of over 240 professional papers and over 50 books, includ-
ing Elements of Electromagnetics (Oxford University Press, 6th ed., 2015),
Fundamentals of Electric Circuits (McGraw-Hill, 5th ed., 2013, coauthored with
C. Alexander), Numerical Techniques in Electromagnetics with MATLAB® (CRC Press,
3rd ed., 2009), and Metropolitan Area Networks (CRC Press, 1995). Some of his
books have been translated into French, Korean, Chinese (and Chinese long form in
Taiwan), Italian, Portuguese, and Spanish. He was the recipient of the McGraw-Hill/
Jacob Millman Award in 2000 for outstanding contributions in the field of electrical
engineering. He was also the recipient of the Regents Professor award for 2012-2013
given by the Texas A&M University System.

His current research interests are in the areas of numerical modeling of electro-
magnetic systems and computer communication networks. He is a registered profes-
sional engineer and a fellow of the Institute of Electrical and Electronics Engineers
(IEEE) “for contributions to computational electromagnetics and engineering educa-
tion.” He was the IEEE Region 2 Student Activities Committee chairman. He was
an associate editor for IEEE Transactions on Education. He is also a member of
Association for Computing Machinery (ACM).

Dr. Warsame H. Ali received his BSc from King Saud University Electrical
Engineering Department, Riyadh, Saudi Arabia, and his MS from Prairie View
A&M University, Prairie View, Texas. He received his PhD in electrical engineering
from the University of Houston, Houston, Texas. Dr. Ali was promoted to associate
professor and tenured in 2010. Dr. Ali joined NASA, Glenn Research Center, in the
summer of 2005, and Texas Instruments (TT) in 2006.

Dr. Ali has given several invited talks and is also the author of 80 research articles
in major scientific journals and conferences. Dr. Ali has received several major NSF,
NAVSEA, AFRL, and DOE awards. At present, he is teaching undergraduate and
graduate courses in the Electrical and Computer Engineering Department at Prairie
View A&M University. His main research interests are the application of digital
PID controllers, digital methods to electrical measurements, and mixed signal test-
ing techniques, power systems, HVDC power transmission, sustainable power and
energy systems, power electronics and motor drives, electric and hybrid vehicles,
and control systems.

XVii



Xviii Authors

NOTES TO STUDENTS

Although electrical engineering is an exciting and challenging discipline, a course on
signals and systems may intimidate you. This book was written to prevent that. A good
textbook and a good professor are an advantage—but you are the one who does the
learning. If you keep the following ideas in mind, you will do very well in this course:

e This course provides a foundation for other courses in the electrical engi-
neering curriculum. For this reason, put in as much effort as you can. Study
the course regularly.

e Signals and systems is a problem-solving subject, learned through practice.
Solve as many problems as you can. Begin by solving the practice problems
following each example and then proceed to the end-of-chapter problems.
The best way to learn is to solve a lot of problems. An asterisk in front of a
problem indicates a challenging problem.

e MATLAB is a software that is very useful in signals and systems and
other courses you will be taking. A brief tutorial on MATLAB is given in
Appendix C to get you started. The best way to learn MATLAB is to start
with it once you know a few commands.

» Each chapter ends with a section on how the material covered in the chapter
can be applied to real-world situations. The concepts in this section may
be new and advanced for you. No doubt, you will learn more of the details
in other courses. We are mainly interested in making you gain a general
familiarity with these ideas.

* Attempt the review questions at the end of each chapter. They will help you
discover some “tricks” not revealed in the class or in the textbook.

e It is very tempting to sell your book after taking this course. However,
our advice to you is, Do not sell your engineering books! When we were
students, we did not sell any of our engineering books and were very glad
we did not. We found that we needed most of them throughout our career.

A short review of the mathematical formulas you may need are covered in Appendix A
while answers to odd-numbered problems are given in Appendix D.

Have fun!
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Society is never prepared to receive any invention. Every new thing is received, and it
takes years for the inventor to get people to listen to him and years more before it can
be introduced.

—Thomas Alva Edison

GLOBAL POSITIONING SYSTEM

V/

Artist interpretation of GPS satellite. (Image courtesy of NASA, Washington, DC; Global Positioning System.
http://en.wikipedia.org/wiki/Global_Positioning_System.)

The global positioning system (GPS) is a typical illustration of what signals and
systems are all about. GPS is a satellite-based navigation system made up of a
network of 24 satellites placed into orbit by the U.S. Department of Defense. GPS
was originally designed for military use, but in the 1980s, the government made
the system available for civilian use.

The 24 satellites that make up the GPS space segment are orbiting the earth about
12,000 miles above us. These satellites travel at speeds of roughly 7,000 miles/h.
GPS satellites transmit two low power radio signals. The signals travel by line of
sight, meaning they will pass through clouds, glass, and plastic but will not go
through most solid objects, such as buildings and mountains.

A GPS signal contains three different bits of information—a pseudorandom code,
ephemeris data, and almanac data. The pseudorandom code identifies which satel-
lite is transmitting information. You can view this number on your GPS unit’s sat-
ellite page. Ephemeris data contains important information about the status of the
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satellite, current date, and time. This part of the signal is essential for determining
a position. The almanac data tells the GPS receiver where each GPS satellite should
be at any time throughout the day. Each satellite transmits almanac data showing the
orbital information for that satellite and for every other satellite in the system.

A GPS receiver calculates its position by precisely timing the signals sent by GPS
satellites. The receiver uses the messages it receives to determine the transit time of
each message and computes the distance to each satellite. These distances along with
the satellites’ locations are used to compute the position of the receiver.

1.1 INTRODUCTION

The idea of signals and systems arises in different disciplines such as science, engi-
neering, economics, politics, and medicine. Scientists, mathematicians, financial
analysts, cardiologists, and engineers all use the concepts of systems and signals
because they are the foundation on which we build many things in our daily lives.
Typical examples of systems include radio and television, telephone networks,
radar systems, computer networks, wireless communication, military surveillance
systems, and satellite communication systems. The theory of signals and systems
provides a solid foundation for control systems, communication systems, power sys-
tems, and networking, to name a few.

Our objective in this book is to present an introductory, yet comprehensive, treat-
ment of signals and systems with an emphasis on computing using MATLAB®. The
knowledge of a broad range of signals and systems is of practical value in describing
human experience. It is also important because engineers must be familiar with sig-
nal and system concepts and apply the knowledge to analyze some specific signals
and systems they will deal with in their professional life.

In this chapter, we begin by discussing some of the basic concepts in signals and
systems. We introduce the mathematical representations of signals, their properties,
and applications. We also discuss different systems and how the material covered in
this chapter is used in some applications. We finally learn how to use MATLAB to
process signals.

1.2 BASIC DEFINITIONS

To avoid any misconception, it is expedient that we define at the outset what we mean
by signals and systems.

A signal x(7) is a set of data or function of time that represents a variable
of interest.

A signal typically contains information about the nature of a phenomenon.
Examples of signals include the atmospheric temperature, humidity, human voice,
television images, a dog’s bark, and birdsongs. More generally, a signal may be a
function of more than one independent variable (time). For example, pictures are
signals that depend on two independent variables (horizontal and vertical positions)
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Excitation Response
x(t) > System o)
(Input signal) (Output signal)

FIGURE 1.1 A simple system.

and may be regarded as two-dimensional signals. However, in this text, we will con-
sider only one-dimensional signals with time as the independent variable.

A system is a collection of devices that operate on input signal x(¢) (or excita-
tion) to produce an output signal y(f) (or response).

A system may also be regarded as a mathematical model of a physical process
that relates the input signal to the output signal. Examples of systems include elec-
tric circuits, computer programs, the stock market, weather, and the human body.
A system may have several mathematical models or representations. The variables
in the mathematical model are described as signals, which may be current, voltage,
or displacement. In electrical systems, signals are often represented as currents and
voltages. In mechanical systems, they are often represented as temperatures, forces,
and velocities. In hydraulic systems, signals may be displacements and pressures.

Figure 1.1 illustrates the block diagram of a single-input single-output system. We
classify the signals that enter the system as input signals, while the signals produced
by the system as outputs. For example, we may regard voltages and currents as func-
tions of time in an electric circuit as signals, while the circuit itself is regarded as a
system. In engineering systems, signals may carry energy or information.

1.3 CLASSIFICATIONS OF SIGNALS

There are many ways of classifying signals: continuous-time or discrete-time, peri-
odic or nonperiodic, energy or power, analog or digital, random or nonrandom, real
or complex, etc.

1.3.1 ConNTINUOUS-TIME AND DISCRETE-TIME SIGNALS

A signal x(7) that is defined at all instants of time is known as a continuous-time signal.

A continuous-time signal takes a value at every instant of time .

An example of a continuous-time signal x(f) is shown in Figure 1.2a.

A discrete-time signal is defined only at particular instants of time.

A discrete-time signal is usually identified as a sequence of numbers, denoted
by x[n], where n is an integer. It may represent a phenomenon for which the
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x(t)
’_\\_/
@) 0 t
x[n]
2
L]
L, . |,
@ | T >
(b) -3-2 -1 0 1 2 3 n

FIGURE 1.2 Typical examples of (a) continuous-time and (b) discrete-time signals.

independent variable n is inherently discrete. An example of discrete-time signal
x[n] is shown in Figure 1.2b.

Since time is naturally continuous, most physical systems are continuous-time
systems. Discrete-time signals are often obtained from continuous-time signals
through sampling.

As typically shown in Figure 1.3, the continuous-time signal x(¢) in Figure 1.3a is
sampled uniformly with sampling period 7 to produce the discrete-time signal x[n]
in Figure 1.3b. We simplify notation by letting x(kKT)2x[k]. A discrete-time signal

Al 1o

AN A
SR

(b)

FIGURE 1.3 Obtaining x[k] from x(f) through sampling.



Basic Concepts 5

is equally spaced in time with sampling period 7. Thus, discrete-time signals are
samples of continuous-time signals, or they may exist naturally.

1.3.2 Periobpic AND NONPERIODIC SIGNALS

A periodic continuous-time signal satisfies
x(t)=x(t+nT) (L.1)

where
n is an integer
T is the period of the signal

A periodic signal is one that repeats itself every 7 seconds.

A popular example of a periodic signal is the sinusoid
x(t)=Asin(wt+0), —wo<t<ow (1.2)

where
A is the amplitude of the signal
o( = 2nf=2xn/T) is the angular frequency in radians per second
0 is the phase in radians

Another example of a periodic (nonsinusoidal) continuous-time signal is shown in
Figure 1.4a. Any signal that does not satisfy the periodicity condition in Equation 1.1

x(t)

(@) -T 0 2T
x(n)
TﬂLM
-N 0 N 2N n

(b)

FIGURE 1.4 Examples of periodic (a) continuous-time and (b) discrete-time signals.
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is called a nonperiodic signal. We will be dealing with nonperiodic signals (step
functions, ramp functions, rectangular functions, etc.) later.
A discrete-time signal x[n] is periodic with period N if it satisfies

x[n]:x[n+N] (1.3)

The discrete-time sine and cosine signals are given in terms of complex exponential
signals as

x[n] = cos(on) = %(ej“’” +e7omy 1.4)

y[n] = sin(on) = L_(ej‘”” —eiomy (1.5)
2j

Another example of a periodic discrete-time signal is shown in Figure 1.4b.

1.3.3 ANALOG AND DIGITAL SIGNALS

If a continuous-time signal x(f) can assume any value in the range —oo < f < o0, then
itis called an analog signal. Although all analog signals are continuous-time signals,
not all continuous-time signals are analog signals. If a discrete-time signal assumes
only finite values, then it is called a digital signal.

An analog signal is a continuous-time signal in which the variation with time
is analogous (or proportional) to some physical phenomena.

A digital signal is a discrete-time signal that can have a finite number of values
(usually binary).

A digital signal can assume only a finite number of values. The difference between
analog and digital signals is that analog is a continuous electrical signal, whereas
digital is a discrete electrical signal. We live in an analog world and most signals
are analog. Although some signals are inherently digital, most digital signals are
obtained from analog signals by sampling or an analog-to-digital converter (ADC).

For example, an analog signal is taken straight from the microphone and recorded
into a tape in its original form. The signal from the microphone is an analog signal,
and therefore the signal on the tape is analog as well. Since data is sent using variable
currents in an analog system, it is very difficult to remove noise and signal distor-
tions during the transmission. For this reason, analog signals cannot perform high-
quality data transmission. On the other hand, digital signals use binary data strings
(0 and 1) to reproduce data being transmitted.
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1.3.4 ENErRGY AND POWER SIGNALS

For continuous-time signal x(7), the normalized energy E of x(f) (assuming x(?) is real) is

0

E= J x(0)? dt

—0

If x(f) is complex valued, Equation 1.6 can be generalized:
E= j|x(t)|2dt

where |x(?)l is the magnitude of x(f). The normalized power P for real x(¢) is
1 T/2
P =lim— I x(6)* dt

T—o
-T/2

This can be generalized for complex value x(7) as

1T/2
— im — 2
P—}liloloT j | x(2) | dt

-T/2

Similarly, for a discrete-time signal x[n], the normalized energy E of x[n] is

=Y

while the normalized power P is

N
1 )
P=hm7 X|n
N%ZNH’;I (]|

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

Based on the definitions of E and P in Equations 1.6 through 1.11, we define the

following:

A signal x(?) or x[n] is an energy signal if and only if 0 < E < co and conse-

quently P = 0.

A signal x(f) or x[n] is a power signal if and only if 0 < P < oo and conse-

quently E = oo.
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If a signal is a power signal, then it cannot be an energy signal or vice versa;
power and energy signals are mutually exclusive. A signal may be neither a power
nor an energy signal if the conditions in Equations 1.6 through 1.11 are not met.
Almost all periodic functions of practical interest are power signals.

1.3.5 EveN AND ODD SYMMETRY

By definition, a signal is even if
x(t)=x(-1) (1.12)

A function is even if its plot is symmetrical about the vertical axis; that is, the signal
for t < 0 is the mirror image of the signal for # > 0. Examples of even signals are
cos t, 2, and #*.

By definition, a signal is odd if

x(t)=—x(-1) (1.13)

The plot of an odd function is antisymmetrical about the vertical axis. Examples of
odd functions are t, £3, and sin .

An even signal x(f) is one for which x(f) = x(—7) and an odd signal y(t) is one
for which y(t)= —y(-1).

Any signal x(f) can be represented as the sum of even and odd signals as
x(1) = X, (1) + x,(1) (1.14)
where
X,(?) is the even part

x,(t) is the odd part

Replacing ¢ with —¢ in Equation 1.14 and incorporating Equations 1.12 and 1.13,
we get

x(=t) = x, (=) + x,(=t) = x,(t) — x,(t) (L.15)

Adding Equations 1.14 and 1.15 and dividing by 2,

x(1) = %[x(t) +x(-1) | (1.16)
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Subtracting Equation 1.15 from Equation 1.14 and dividing by 2,

%0 = [x(0)-x(-0)] w17
Thus,
(1) = x(t)+ x(—t) N x(t)— x(—t) (118)
2 2
even odd

Equation 1.16 shows that the two signals are added and scaled in magnitude to produce

the even signal x,(r), while Equation 1.17 indicates that x(—7) is subtracted from x() and

the result is amplitude-scaled by 0.5 to produce the odd signal x,(#). For a discrete-time

signal x[n], we can construct the even and odd parts using Equations 1.16 and 1.17.
Note the following properties of even and odd functions:

. The product of two even functions is also an even function.

. The product of two odd functions is an even function.

. The product of an even function and an odd function is an odd function.

. The sum (or difference) of two even functions is also an even function.

. The sum (or difference) of two odd functions is an odd function.

. The sum (or difference) of an even function and an odd function is neither
even nor odd.

AN AW =

Each of these properties can be proved using Equations 1.12 and 1.13.

Example 1.1
Show that the signal in Equation 1.2 is periodic.

Solution
The period of the signal in Equation 1.2 is

Xt +T) = Asinloft +T)+ 0] = Asin{m(t+2nj+9}
(O]

= Asin(ot + 27+ 0) = Asin(wt +0)

= x(t)

showing that x(t) satisfies Equation 1.1; hence it is periodic.
Practice Problem 1.1  Show that the signal x(t) = A cos (2xnt + 0.17) is periodic.

Answer: Proof.
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Example 1.2

Determine whether the following signals are energy signals, power signals, or
neither.

e, 0O<t<o, a>0
0, otherwise

(b) x(t) = Acos(wt + 0)
(©) x[n] = 10e/2"

Solution
(@ The normalized energy of the signal is

©

A o2at
£ I x(tYdt = I et =
g -2a

© 1

=— <o
0 2a

—0

confirming that x(¢) is an energy signal.
(b) The sinusoidal signal has period T = 2n/w.
The normalized average power is

T T
p= %J.X(tfdt = 23 J. A? cos*(wt + 0)dlt
n

0 0

5 2n/®
_Ao j %[1+cos(2wt+29)]dt
0

2n

_Aolm A
2n 2 ® 2

<

showing that x(t) is a power signal. All periodic signals are generally power
signals.

© ‘x[n]‘ = ‘1 0e’*
=10, cos? (2n) +sin* (2n)] =10

The normalized average power is

N N
1 1
P=lim—— ) Ixn]P=lim 102
AH<>021\/+1,7:Z:4V In) N”°°2N+1;,

1100(2/\l+1):100<oo

=10fe

=101lcos(2n)+ jsin(2n)!

N—o 2N +

that is, x[n] is a power signal.
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Practice Problem 1.2 Determine whether the following signals are energy signals,
power signals, or neither.

@ x( t, O<t<o
a =
X 0, otherwise
by (0 A, —a<t<a
x(t) =
(b) 0, otherwise

(c) x[n] = 5e~/4n

Answer: () Neither, (b) energy, (c) power.

Example 1.3

Determine the even and odd components of
(@ x(t) = 10sint + 5cost — 2 costsint
(b) y(©) shown in Figure 1.5a

Solution
(@) We first find x(—=t) and then apply Equations 1.13 and 1.14. We should keep
in mind that sin(=t) = —sint and cos(—t) = cost.
x(=t) = 10sin(=t) + 5cos(~t) — 2 cos(—t) sin(-t)
=-10sint +5cost +2costsint

Hence,
Xo(t) = MO+ Xt _ 5cost
2
Xo(t) = w =10sint—2costsint

(o) = 0, t<O

yio= 1, t>0

1, t<O0

—t) =

y=0 {O, t>0

¥(®) y(=1)
A A

1 1

()

FIGURE 1.5 For Example 1.3(b).
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Hence,
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1
—(0+1, t<O0
y(t)_y(t)+y(—t)= 2( 7 < _1
2 Yav0, >0 2
2
l(0—1) t<0 1 t<0
yolt) = yO-y=t) _J2 ! _) 2
2 l(1—0), t>0 l, t>0
2 2
Both y.(t) and y,(t) are sketched in Figure 1.6.
Ye(®) Yo(t)
A
1/2
1/2 1 1
(a) (b)
FIGURE 1.6 For Example 1.3(b).
0
1
>
0 t
FIGURE 1.7 For Practice Problem 1.3b.
ha(t)
he(2)
1/2
12 1 Ly,
-1/2
|
(a) (b)

FIGURE 1.8 For Practice Problem 1.3b.
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Practice Problem 1.3  Find the even and odd parts of the following signals:

@ z(t)=t+4t-10
(b) h( shown in Figure 1.7

Answer: (@) z.(t) = 2 — 10, z,(t) = 4t, (b) See Figure 1.8.

e

1.4 BASIC CONTINUOUS-TIME SIGNALS

We now consider some simple, standard continuous-time signals. These include the
unit step function u(f), the unit ramp function r(f), and the impulse function &(7).
These three functions are called singularity functions. A singularity function is one
that is discontinuous or has discontinuous derivatives. In addition to the singularity
functions, we will also consider the unit rectangular function Il(#), the unit triangular
function A(?), the sinusoidal function, and the exponential function.

1.4.1  UNiT Step FUNCTION

The unit step function u(t), also known as Heaviside unit function, is defined as

=1t >0 (1.19)
u = .
0, <0

The unit step function «(7) is O for negative values of 7 and 1 for positive values
of 1.

The unit step function is shown in Figure 1.9. We should note that u(?) is discon-
tinuous at ¢ = 0; it is undefined at # = 0.

We use the step function to represent an abrupt change, like the changes that
occur in the circuits of control systems and digital computers. It is used in represent-
ing a signal that is zero up to some time and finite thereafter. For example, the signal

o cosot, t=>0 (1.20)
x(t) = .
0, t<0
u(t)
1
0 :

FIGURE 1.9 The unit step function.
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x(t)

Ve S SGN

-~V

»
»
t

(b) 0

FIGURE 1.10  An arbitrary signal x(¢) in (a) is multiplied by u(?) in (b).

can be written concisely as

x(t):u(t)cosmt 1.21)

As another example, when we turn the key in the ignition system of a car, we
are actually introducing a step voltage, the battery voltage. Given a continuous-time
signal x(7), the product x(H)u(f) is given by

~ {x(t), >0
x(Hu(t) = (1.22)

0, t<0

This is illustrated in Figure 1.10. From this, we conclude that the multiplication of a
signal x(r) with the unit step function u(¢) eliminates the values of x(¢) for 7 < 0.

1.4.2 UNIT IMPULSE FUNCTION

The derivative of the unit step function u(?) is the unit impulse function 5(7), which
we write as

(1) d (1) 0 120 (1.23)
=—u(t)= .
dt undefined, =0
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5(t) A

FIGURE 1.11 The unit impulse function.

The unit impulse function, also known as the delta function, is shown in Figure 1.11.

The unit impulse function 8(¢) is zero everywhere, except at ¢ = 0, where it is
undefined.

The unit impulse may be regarded as an applied or resulting shock. It may be
visualized as a very short duration pulse of unit area. This may be expressed math-
ematically as

O+
J o(t)dt =1 (1.24)
e

where ¢ = 0~ denotes the time just before # = 0 and ¢ = 0* is the time just after ¢ = 0.
For this reason, it is customary to write 1 (denoting unit area) beside the arrow that is
used to symbolize the unit impulse function, as shown in Figure 1.12. For example,
an impulse function 103(#) has an area of 10. Figure 1.12 shows the impulse functions
56(t + 2), 108(?), and —40(t — 3).

108(¢)

58(¢+2)

L1

-2 -1 0 1 2 3

~+~V

—48(¢-3)

FIGURE 1.12 Three impulse functions.
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g(t)

v

Al 4

FIGURE 1.13  Functions that approach the unit step and unit impulse as A — 0.

To better understand the delta function, consider the function shown in Figure 1.13a.
The function g(f) becomes a unit step as A—0.

u(t) = lim g(7) (1.25)
A—0

The derivative g'(f) of g(f) is shown in Figure 1.13b, where we notice that as A—0,
g'(f) becomes the unit impulse function.

8(t) = lim g'(¢) (1.26)
A—0

Thus, we can consider the delta function 8(¢) as a large spike or impulse at the origin.
To illustrate how the impulse function affects other functions, let us evaluate the
integral

b
j FOS(—1,)dt (127)

where a < t,< b. Since 8(r—t,) = 0 except at 7 = t,, the integrand is zero except at ¢,.
Thus,

b b b
j FOS(t—1,)dr = jf(tg (1 —1,)dt = f(to)j 8(t—1,)dt = £(1,)
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or

b
jfama—nyh=fau (1.28)

This shows that when a function is integrated with the impulse function, we obtain
the value of the function at the point where the impulse occurs. This is a useful prop-
erty of the impulse function known as the sampling or sifting property. The special
case of Equation 1.28 is for 7, = 0. Then, Equation 1.28 becomes

O+
jfm&nm=fm> (1.29)
J

If the integration interval does not include the impulse function, then the integration
in Equation 1.23 is zero. For example,

2 5
J. S(t)dt =0, IS(t)dt =0 (1.30)
-0 3

This and other properties of the impulse functions are presented in Table 1.1.

1.4.3 UnNiT Ramp FuncTION

Integrating the unit step function u(f) results in the unit ramp function r(r); we write

t

r(t) = J.u(k)dk = tu(t) (1.31)

—0

TABLE 1.1
Properties of the Unit Impulse Function
L. f(Hd(t—1,) = fit,)d(1—t,)

2. j FOS(—1,)dt = £(1,)
d
3. -t )=—u(t—
B1—1,)= = ult=1,)

i L, t>t,
4ou(t—t,)= Im-m&:{

—n

0, t<t,

5. 8(=1) = 8(1), that is, 8() is an even function
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()
A
1 _______
!
I
!
!
: >
0 1 t
FIGURE 1.14 The unit ramp function.
or
o 0, <0
r =
120 (1.32)

The unit ramp function is zero for negative values of ¢ and has a unit slope
for positive values of 7.

Figure 1.14 shows the unit ramp function. In general, a ramp is a function that
changes at a constant rate.

We should keep in mind that the three singularity functions (step, impulse, and
ramp) are related by differentiation as

_ du(t) _ dr(t)
o(1) = R u(r) I (1.33)
or by integration as
u(t) = j S\ dh, r(t)= ju(k) d (1.34)

1.4.4 REecTANGULAR PuLse FuNcTION

The unit rectangular pulse function is defined as

t I, |tkrt/2 I, —t/2<t<1/2
I — |= o= . (1.35)
T 0, otherwise |0, otherwise
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Al'[(t/T)

b 4

-1/2 0 T/2
FIGURE 1.15 The unit rectangular pulse function.

It is centered at the origin and has unit height and width <. Figure 1.15 shows the
rectangular pulse function. It is evident from the figure that we can express the rect-
angular pulse function in terms of the unit step function as

HORICHECS

The rectangular function results from an on—off switching operation of a source. It
is used in extracting part of a signal.

1.4.5 TRIANGULAR PuLse FUNCTION

The unit triangular function is defined as

1+L, —1<t<0
T
t l—m, —T<t<T t
Al —|= T =<q1-—, O<t<rz (1.37)
t 0 otherwise t
’ 0, otherwise

This means that the unit triangular pulse is centered at the origin, has unit height,
and width 2t. The triangular function is shown in Figure 1.16.

1.4.6 SINUSOIDAL SIGNAL

Perhaps the most important and useful of all the standard signals is the sine wave or
sinusoidal signal. It can take the form of

x(t) =sin oz, x(t) =cos ot (1.38)
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A(t/T)
A
1
>
-T 0 T ¢
FIGURE 1.16 The unit triangular pulse function.
or by combining both to form a complex exponential signal
x(t) = /" = cos ot + jsin ot (1.39)

where ® is the frequency of the sinusoid. We already came across sinusoids in
Equation 1.2.

1.4.7 EXPONENTIAL SIGNAL

The continuous-time exponential function is defined as
x(r) = Ae” (1.40)

where A and a are constants, which may be complex in general. If we assume that
A and a are real, the exponential function is shown in Figure 1.17 for both positive and
negative values of a. The signal x(#) in Equation 1.39 is a complex exponential signal,

x(t) x(t)

N
v

(a) (b)

FIGURE 1.17 The exponential signal: (a) a > 0 and (b) a < 0.



Basic Concepts 21

which will play a major role in our treatment of signals and systems. One reason that
causes the signal to arise in many applications is its rate of change.

ix(z‘) =aAe” = ax(t) (1.41)
dt

This means that the derivative of x(¢) at any time is proportional to its value at that time.

Example 1.4

Evaluate the following:

0

(€)] J.S|n3t8(t ——) dt

—o0

0

(b) j £48(t - 2) dt
Solution
(@) Ism3t5(t——j dt =sin3t
b 2 t=n/2
—sln?ic -1
2

b [ese-2de=t] =2 =16

-0

Practice Problem 1.4 Evaluate the following:

2 x
(@) J[sm(t +2H8(t)dt

10

J‘t +4t —2)8(t - 1) dt
0
Answer: (@) 1, (b) 3.

Example 1.5
Express the pulse (or rectangular) in Figure 1.18 in terms of the unit step. Calculate
its derivative and sketch it.

Solution

The signal in Figure 1.18 is also called the gate function. It may be regarded as a
step function that switches on at t = 2 s and switches off at t = 5 s. As shown in
Figure 1.19a, it consists of two step functions. From the figure, we get

v(t) = 10u(t — 2) — 10u(t — 5) = 10[u(t — 2) — u(t = 5)]
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10

4

FIGURE 1.18 For Example 1.4.

10u(t-2) —10u(t-5)
10 + S >
01 2 3 4 |5 t
> -10
01 2 t -
()
dvidt
108(¢ - 2)
| [ |
o 1 2

L1 .
3 4 r t
~108(¢—5)

FIGURE 1.19 For Example 1.5: (a) decomposition of the pulse in Figure 1.18 and (b) deriva-
tive of the pulse in Figure 1.18.

(b)

Taking the derivative of this gives

1 0ls(—2)— 8¢ - 5)]
dt

which is shown in Figure 1.19b.

Practice Problem 1.5 Express the current pulse in Figure 1.20 in terms of the unit
step function. Find its integral and sketch it.

Answer: 10[u (t)-2u(t=2)+u (t—4)} 10[r (t)—2r(t—2)+r(t—4)} See Figure 1.21.
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»
»

(=)
v

-10

FIGURE 1.20 For Practice Problem 1.5.

[idt
A

20

A 4

FIGURE 1.21 For Practice Problem 1.5.

Example 1.6

Sketch the following signals:
@ x(0=301 (ﬂj
2

t-3
(b) y(t)=2A[—j
2
Solution

(@) The signal x(t) is a rectangular pulse centered at t = 4 with magnitude 3
and has width 2. It is sketched in Figure 1.22a. To be sure that the sketch
is correct, we use Equation 1.35. Replace every t with t — 4 and set © = 2.
We obtain

X(t)=3n(t‘4)_3{1r —2/2<t-4<2/2

2 0, otherwise
3, -—-l<t-4«<1
- {O, otherwise
3, 3<t<5
- {O, otherwise

which is exactly what we have in Figure 1.22a.
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x(t) 0
A

v
v

FIGURE 1.22  For Example 1.6.

(b) This is a triangular pulse centered at t = 3 with magnitude 2 and with t =2
so that the width is 2t = 4. Thus, y(0) is sketched in Figure 1.22b. To con-
firm this, we use Equation 1.37. Replace every t with t — 3 and set © = 2.

We obtain
123 ci3<0
2
y(t):ZA[—t_3]:21——t_3/ 0<t-3<2
2 2
0, otherwise

2+t-3, 1<t<3
=<42-t+3, 3<t<5
0, otherwise
t-1, T<t<3
=45-¢, 3<t<5

0, otherwise

which confirms the sketch in Figure 1.22b.

Practice Problem 1.6  Sketch the following signals:

t—2
@ x)= 5n[7]

t—2
(b) yl) = 3A(Tj

Answer: See Figure 1.23.
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x(t)
A ¥(®)
A
5
3
o 1 2 3 4 ¢ -1 0 3 4 5 ¢
(a) (b)
FIGURE 1.23  For Practice Problem 1.6.
1.5 BASIC DISCRETE-TIME SIGNALS
Here we consider some simple, standard discrete-time signals.
1.5.1  UNIT STEP SEQUENCE
Like the continuous-time unit step, we define the unit step sequence u[n] as
=" ") (1.42)
uln] = .
I, n=0

As shown in Figure 1.24, u[n] is a sequence of 1s starting at the origin. Notice that
u[n] is defined at n = 0 unlike u(f), which is not defined at = 0.

1.5.2  UNIT IMPULSE SEQUENCE

In discrete time, we define unit impulse sequence as

0, n=z0
d[n]=
1, n=0

uln)

(1.43)

FIGURE 1.24 The unit step sequence.

v
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S[n]

FIGURE 1.25 The unit impulse sequence.

TABLE 1.2

Properties of the Unit Impulse Sequence
1. x[n]6[n] = x[0]8[n]

2. x[n]8[n—k] = x[k]d[n—k]

3. 8[n] = u[n]-u[n—1]

4. uln]= ZS[k]
k=

0

5. x[n]= Z x[k13[n — k]

k=0

This is illustrated in Figure 1.25. Notice that we do not have difficulties in defining
S[n] unlike 5(7). Some properties of the unit impulse sequence are listed in Table 1.2.

1.5.3  UNiT RAMP SEQUENCE

The unit ramp sequence is defined as

my={" =0 (144)
rin| = .
0, n<O0

The sequence is shown in Figure 1.26. The relationships between unit impulse, unit
step, and unit ramp sequences are

Stn) = ulm)—uln—11={ > "0 (1.45)
n|i=un un = 0’ "= 0 R
uln] = Z (m] (1.46)
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r(n]
4_
3_
2 —
I‘TI
———o =90 =9 >
-3 -2 -1 01 2 3 4 n

FIGURE 1.26 The unit ramp sequence.

uln]l=r[n+1]—r[n] (1.47)
n—1
=) ulm] (1.48)

1.5.4 SINUSOIDAL SEQUENCE

The sinusoidal sequence or a discrete-time sinusoid is given by

_ 2mn _ j(2n/N+0)
x[n] = Acos(N + ej = Re[ Ae ] (1.49)
where
A is a positive real number and is the amplitude of the sequence
N is the period
0 is the phase

n is an integer

A typical sinusoidal sequence for A = 1, N = 12, and 0 = 0 is shown in Figure 1.27.

FIGURE 1.27 A discrete-time sinusoidal sequence, x[n] = cos(nn/6).
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1.5.5 EXPONENTIAL SEQUENCE

If we sample a continuous-time exponential function x(f) = Ae™* with sampling
period 7, we obtain the sequence x[n] = Ae=*T = Aa", with a = e~T. Thus, the expo-
nential sequence is given by

x[n]=Aa" (1.50)

where
A and « are generally complex numbers
n is an integer

A typical discrete-time exponential sequence is shown in Figure 1.28. For the signal
shown in Figure 1.28, both A and « are real numbers.

Example 1.7

. n>0
If rln] = nuln] = {g, n <0’ Find y[n] = 2r[1—n]
Solution

To obtain y[n], we replace every n in r[n] with —n + 1.

-2n+2, -n+120

ylnl = 2rl-n+1=2(=n+Nul-n+1] = { 0 Chi1<0

B -2n+2, n<l1
0, n>1

Practice Problem 1.7  Given r[n] in Example 1.7, obtain z[n] = r(n + 2).

n+2, nx>-2

Answer: z[n] =
0, n<-2

.-qvf?TTTI

FIGURE 1.28 A discrete-time exponential sequence, a > 1.
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x[n]
2
1
o—eo L1
2 -1 0 1 2 n
(a)
yln]
3
®
2
1
I I I S
3 -2 -1 0 1 2 n

(b)

FIGURE 1.29 For Example 1.8.

Example 1.8

Write down expressions for the sequences shown in Figure 1.29.

Solution
We use item 5 in Table 1.2 as a general way of expressing any discrete signal.

0

xln] = z x{k18[n = k]
k=—0

(@ For the discrete-time signal in Figure 1.29a,

x[n]=8(n)+25(n-3)

(b) Similarly, for y[n] in Figure 1.29b,

y[n]=8[n+2]+28[n+1]+38[n]+28[n-2]

Practice Problem 1.8 Write down expressions for the sequences shown in
Figure 1.30.

Answer:

(@ x[n] =8[n + 1] + 28[n—1]
(b) yInl = 28[n + 2] + 8[n + 1] + 8[n-2] + 28[n-2]
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x[n] yln]
2 2
1 [ hl T[
!
-1 01 " 210 1 2 n

FIGURE 1.30 For Practice Problem 1.8.

1.6 BASIC OPERATIONS ON SIGNALS

We have limited ourselves to considering signals with one independent variable time
(9 or integer [n]. We consider six basic operations or transformations on real function.
The first three operations have to do with time, while the second three deal with trans-
formations in amplitude. The combinations of these transformations make it possible to
obtain complex signals from the basic, standard signals. Signals that are produced by
these transformations are useful in sonar, radar, signal processing, and communication
systems.

1.6.1 TiME REVERSAL

Given a signal x(¢), its time reversal is x(—f). The reversed signal x(-7) is obtained as
a reflection of x(r) about the ¢ = 0, that is, we perform a reflection about the vertical
axis. (Reflection about the horizontal axis results in —x(f).) An example of this is
shown in Figure 1.31a. In the figure, we get

-1, -1<t<0
x(t)=41-¢t, 0O0<r<2 (1.51)
0, otherwise

From this, we obtain x(—7) by replacing every ¢ with —¢ in Equation 1.51. Hence,

-1, -1<-t<0 -1, O<r<l1
x(=t)=<31-(-t), O0<-t<2 =<1+1, -2<t<0 (1.52)
0, otherwise 0, otherwise

as evident from Figure 1.31b.



Basic Concepts 31

x(=t)

A
x(t)

A 1

(2) (b)

FIGURE 1.31 Time reversal of a signal.

1.6.2 TIME SCALING

Time scaling involves the compression or expansion of a signal in time. Given a
continuous-time signal x(7), the time-scaled form of x() is x(af), where a is a con-
stant. The scaled signal x(af) will be compressed if lal > 1 or expanded if lal < 1;
a negative value of a yields time reversal as well as compression or expansion.
Again, we can obtain x(af) from the signal in Equation 1.51 by replacing every ¢ with
at and simplifying. We show an example in Figure 1.32. Notice that the time reversal
discussed in Section 1.6.1 can be considered a special case of time scaling with the
scaling factor a = —1.

1.6.3 TIME SHIFTING

Given a continuous-time signal x(f), the time-shift form of x(f) is x(¢ — ¢,), where ¢, is
a constant. If z, > 0, then the signal x(¢ — t,) is delayed and the signal is shifted to the
right relative to = 0. When 7, < 0, the signal x(t — t,) is an advanced replica of x(7),
with x(¢) shifted to the left. Examples of x(r — 2) and x(t + 1) are shown in Figure 1.33.

x(t) x(0.5¢t) x(2t)

FIGURE 1.32 An example of time scaling.
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2
x(tA ) x(t+1)

[

FIGURE 1.33 Time-shifted signals.

For any signal x(¢), the transformation at +b on the independent variable can be

performed as follows:
b
x(at+b)=x|a| 1+— (1.53)
a

where a and b are constants. This involves two steps:

1. Scale by factor a. If a is negative, reflect x(f) about the vertical axis.
2. If bla is negative, shift x(f) to the right. If b/a is positive, shift x(7) to the left.

1.6.4 AMPLITUDE TRANSFORMATIONS
The previous three transformations deal with the independent variable, . Equivalent

transformations of the amplitude of the signal will now be discussed. Given a signal
x(f), amplitude transformations take the general form

y(t)=Ax(1)+B (1.54)
where A and B are constants. For example, let
y(t)=-2x(t)+4 (1.55)

We notice that A = -2 means amplitude reversal (—x(f) implies reflection about the
horizontal axis) and amplitude scaling (IAl = 2). Also, B = 4 shifts vertically the
amplitude of the signal.
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x(t)
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FIGURE 1.34 For Example 1.9.

Example 1.9

A continuous-time signal is shown in Figure 1.34. Sketch each of the following

signals:

@ x2t=6), (b) x(t/2 + 1), () y(t) = =1 + 2x(t)

Solution

(@) We can do this in two ways:

Method 1: We can write this as x(2(t — 3)), indicating that x(t) is compressed
by a factor of 2 and shifted to the right by three units. Hence, x(2t — 6) is as

sketched in Figure 1.35a.
Method 2: From Figure 1.34,

3t, O<t<1
x(t) =143, 1<t<?2 (1.9.1)
0, otherwise
x(2t—-6)
3 4 y(8)=-1+2x(t)
/1 6
0 1 2 3 4 ¥
(a) 4
A x(t/2+1)
2
3
1 2 i’
210 1 2 3 : -

FIGURE 1.35 For Example 1.9.

(©
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Replacing every t with 2t — 6 gives

3(2t-6), 0<2t-6<1

x2t-6)=1 3, 1<2t-6<2
0, otherwise
6t—-18, 3<t<3.5
= 3, 3.5<t<4
0, otherwise

which is what we have in Figure 1.35a.

(b) Method 1: We write x(t/2 + 1) = x(1/2(t + 2)) indicating that x(t) is expanded
by a factor of 2 and advanced or shifted left by 2 units. The signal x(t/2 + 1)
is sketched in Figure 1.35b.

Method 2: Replace every t in Equation 1.9.1 by /2 + 1.

3t/2+1, 0<t/2+1<1

X[£+1J= 3, 1<t/2+1<2
2 0, otherwise
1.5t+3, -2<t<0
= 3, O<t<?2
0, otherwise

which agrees with the sketch in Figure 1.35b.
(c) This deals with amplitude amplification; there is no transformation of time t.

Method 1: The signal x(t) is amplified by 2 and lowered by -1, as shown in
Figure 1.35¢, giving =1 + 2x(t).

Method 2:

—1+6t, O<t<l1
y(t) = =1+ 2x(t) =4 =1+6, 1<t<2

-1, otherwise
—1+6t, O<t<1
= 5, 1<t<?2
-1, otherwise

which agrees with what we have in Figure 1.35c.

Practice Problem 1.9 With the continuous-time signal in Figure 1.34, sketch
each of the following signals:

@ x@2t+4), (b) =2x(t-1), (c) 2 + x(-?).

Answer: See Figure 1.36.
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x(2t +4)

—2x(t-1)
A
A 2+x(-2)
0 1\ 2 3| ¢ — 5
-3
A\
-6
(b) © -2 -1 0 t

FIGURE 1.36 For Practice Problem 1.9.

Example 1.10

A discrete-time signal is shown in Figure 1.37. Sketch each of the following signals:
(@) x[n=3], (b) x[-n + 3], (c) x[2n].

Solution

(@) This involves shifting x[n] three units to the right, as shown in Figure 1.38a.

(b) We can write x[-n + 3] = x[-(n — 3)], meaning that we perform a reflection
about the vertical axis to get x[-n] and we then shift these three units to the
right. This is shown in Figure 1.38b.

(c) This involves compressing x[n] by a factor of two, as shown in Figure 1.38c.

Practice Problem 1.10  With the discrete-time signal shown in Figure 1.37, sketch
each of the following signals: (@) x[—nl, (b) x[n + 2], (c) x[n/2]

Answer: See Figure 1.39.

FIGURE 1.37 For Example 1.10.
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FIGURE 1.38 For Example 1.10.

.TTIIv ;

-5-4-3-2-10 2
(a)
x[n+2] x[n/2]
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FIGURE 1.39 For Practice Problem 1.10.

1.7 CLASSIFICATIONS OF SYSTEMS

As mentioned in Section 1.2, a system may be regarded as a mathematical model of
a physical process that relates the input signal x(7) to the output signal y(#). This rela-
tionship is illustrated in Figure 1.40a. Although a system may have many input and
output signals as shown in Figure 1.40b, we will focus our attention on the single-
input single-output case in this book.
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X ————— System Em—

X —p —>
Xy ————> —>
System
X, —— F———Jm

(b)

FIGURE 1.40 Block diagram representation: (a) system with single-input and single-output
and (b) system with many inputs and outputs.

If x is the input signal and y is the output signal, they are related through a
transformation

y=Tx (1.56)

where T is an operator transforming x into y.

1.7.1 ContiINuous-TIME AND DISCRETE-TIME SYSTEMS

A system is continuous-time if the input and output signals are continuous-time.
It is discrete-time if the input and output signals are discrete-time. In continuous-
time systems, time is measured continuously. Some continuous-time systems are
described by ordinary differential equations, algebraic equations (resistive circuits),
polynomial equations (diodes), integral equations (op amp integrator circuits), etc.
For discrete-time systems, time is defined only at discrete instants and the systems
are described by difference equation and any other way the input—output proper-
ties of the system may be specified. Continuous-time and discrete-time systems are
illustrated in Figure 1.41.

1.7.2 CAUsAL AND NONCAUSAL SYSTEMS

The output of a system may depend on the present and past inputs. A system that
has this property is known as causal system. A causal (or nonanticipatory) system
is one whose output y(f) at the present time depends only on the present and past
values of the input x(¢).

A causal system is one whose present response does not depend on the future
values of the input.
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s —> VT ——e 0
(@)
) ——s P i

FIGURE 1.41 Block diagram representing (a) a continuous-time system and (b) a discrete-
time system.

Examples of causal systems are

y(r)=x(r-1) (1.57)

v[n]= x[ﬂ (1.58)

Every physical system is causal. The motion of a car is causal since it does not expect
the future actions of the driver. Causality is a necessary condition for a system to be
realized in the real world we live in. Causal systems are physically realizable.

If a system is not causal, it is said to be noncausal or anticipatory. Typical exam-
ples of noncausal systems are

y(t)=x(r+2) (1.59)
y[n]=x[1-n] (1.60)

The system in Equation 1.59 is not causal because the output at, say ¢ = 0, is equal to
input at # =2. This is not physically realizable. The same logic applies to the system
in Equation 1.60.

An ideal filter is noncausal and is not physically realizable; it cannot be built in
practice. It should be noted that causality is not often an essential constraint in appli-
cations in which the independent variable is not time, such as in image processing.
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1.7.3 LINEAR AND NONLINEAR SYSTEMS

Linearity is the property of the system describing a linear relationship between
input (cause) and output (effect). The property is a combination of both homogeneity
(scaling) property and the additivity property.

The homogeneity property requires that if the input is multiplied by any constant
k, then the output is multiplied by the same constant, that is,

T {ke} = ky (1.61)

The additivity property requires that the response to a sum of inputs is the sum of
the responses to each input applied separately. If Tx, =y, and Tx, = y,, then

T{x +x}=y+» (1.62)
We can combine Equations 1.61 and 1.62 as
T {kix, +koxs } = iy +koys (1.63)
where k, and k, are constants.

A linear system meets the two conditions in Equations 1.61 and 1.63, that is,
a system is linear if it satisfies homogeneity and additivity properties.

A linear system may be regarded as one in which all the interrelationships
among the quantities involved are expressed by linear equations, which may be
algebraic, differential, or integral. A very important consequence of linearity is that
superposition principle applies. If an input consists of the weighted sum of several
signals, then the output is the weighted sum of the responses of the system to each
of those signals.

An example of a linear system is a circuit that contains resistors, capacitors, and
inductors, since these are linear elements. Devices such as rectifiers, diodes, and
saturating magnetic devices are nonlinear. A system having even one such device is
treated as nonlinear. Examples of nonlinear systems are

y=sinx (1.64)

y=x (1.65)
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1.7.4 TIME-VARYING AND TIME-INVARIANT SYSTEMS

When one or more parameters of the system vary with time, the system is said to
be time-varying.

A time-varying system is one whose parameters vary with time.

For continuous-time, time-varying systems are described by time-varying differ-
ential equations. For discrete-time, time-varying systems are described by time-
varying difference equations. If all system parameters are constant with time, the
system is said to be time-invariant or fixed.

In a time-invariant system, a time shift (advance or delay) in the input signal
leads to the time shift in the output signal.

For a continuous-time system, the system is time-invariant when
T{xt-1)}=y(t—1) (1.66)

where 7 is a constant. Consider the input x(?) of a linear system yielding an output y(?). For
the system to be time-invariant, a shifted input x(# — t) should result in a shifted output
¥(t — 7). Figure 1.42 shows an example of time-invariant system, while Figure 1.43 gives
an example of time-varying system.

For a discrete-time system, the system is time-invariant when

T{x[n—m]} :y[n—m] (1.67)
x(t)
4 x)—» 1 y(;)‘t

ol f
y(t-1)a
T, | y(t—1) B
Abeccooooo T
0  H+1 ftr 0 h+t T

FIGURE 1.42 An example of a time-invariant system.
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FIGURE 1.43 An example of a time-varying system.

for any integer m. A continuous-time/discrete-time system that does not satisfy
Equation 1.63 or 1.64 is time-varying. Such a system has parameters that vary
with time. We will confine our efforts to linear time-invariant (LTI) systems in
this book.

1.7.5  SYSTEMS WITH AND WITHOUT MEMORY

When the output of a system depends on the past and/or future input, the system is
said to have a memory. For example, a system described by

y(t)=x(1)-x(t=1)+x(r+2) (1.68)

has a memory since the output y(f) requires the past input x(¢ — 1), the current input
x(?), and the future input x(t + 2).

If the output of a system does not depend on the past and/or future input, the sys-
tem is memoryless (or instantaneous).

A memoryless system is one in which the current output depends only on the
current input; it does not depend on the past or future inputs.

A system with a memory is also called a dynamic system. A memoryless sys-
tem is called a static system. Many practical systems such as resistive networks,
amplifiers, operational amplifiers, and diodes are usually modeled as memoryless
systems.
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Example 1.11

Show that the system represented by

% +4y(t) = 2x(0) GRIR)

is linear.

Solution

To prove that the system is linear, we need to show that Equation 1.63 is satisfied. Let
the inputs x,(0) and x,(t) cause the system responses y,() and y,(t), respectively, that is,

%3?~+4y40::2x40 (111.2)
fg%~+4ygw::zxgo (1.11.3)

Multiplying Equation 1.11.2 by a constant A and Equation 1.11.3 by constant B and
adding, we get

%ﬂ%ﬁﬂﬁ}4ﬁ%+&ﬂz%ﬂﬁﬂm

This satisfies the system equation (1.11.1) with

X = Ax; + Bx,
y =Ay1+By;

(The time dependence is dropped for simplicity.) In other words, with the input as
x = Ax, + Bx,, the response is y = Ay, + By,. Superposition holds and we conclude
that the system is linear.

Practice Problem 1.11  Show that the system described by
y(t)=2x(t)-5

is nonlinear.

Answer: Proof: a part of the output signal does not depend on the input signal.

Example 1.12
A modulator with carrier frequency of @_ gives an output

y(t) = x(t) cos w.t
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Determine whether the system is (@) memoryless, (b) causal, or (c) time-invariant.
Solution

(@ The system is memoryless since the output y(t) depends only on the present
values of the input x(t), that is, the output is a function of the input at only
the present time.

(b) Itis causal since the output y(t) does not depend on the future values of the
input x(t). Since it is memoryless, it is also causal.

(¢) To be time-invariant, an input x(t — T) should produce an output y(t — 7). Let
the input signal x,(t—t,) produce an output signal y,. Then

Vo) =x(t—t,) cos ot
But we know that
y(t—t,)=x(t—t,) cos Ot —t,) # Y,

The system fails to satisfy the time-invariance property of Equation 1.66.
Hence it is not time-invariant. It is time-varying.

Practice Problem 1.12  Consider the system represented by y(t) = x(t — 3). Discuss
the properties of the system, that is, check whether it is memoryless, causal, and
time-invariant.

Answer: Not memoryless, causal, and time-invariant.

1.8 APPLICATIONS

The information covered in this chapter is useful in many systems such as mass-
spring-damper system, moving average filter, stock trading, electrical circuits,
square-law device, and digital signal processing (DSP). We will briefly consider
three simple applications related to what we have covered in this chapter. These
applications deal with electric circuits, square-law device, and DSP system.

1.8.1 Erectric Circuit

Electric circuits are mostly linear systems. Consider the one shown Figure 1.44.
Our objective is to find the system equation for it. By applying Kirchhoff’s voltage
law, we obtain

FIGURE 1.44 An electric circuit.
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x(t)=Ri(r)+y(1) (1.69)
t
But i(¢) = %J. y(A)d\. Substituting this in Equation 1.69,

t

R
YO =01 j YO dh. (170)

—0

Or we may differentiate this to get

dy(t)

" +7 ()_— 1.71)

This is an explicit input—output relationship between x(f) (source voltage) and y(f)
(inductor voltage).

1.8.2 SQUARE-LAW DEvICE

A square-law device is a device where either current or voltage depends on the square
of the other. The input—output relationship is given by

y(1)=x*(t) (1.72)

Any system that is defined by Equation 1.72 is called a square-law device. To realize
this system, we use a signal amplifier, as shown in Figure 1.45. For this reason, the
square-law detector is also called a signal multiplier. It can be built using operational
amplifiers and diodes. It is evident from Equation 1.72 that the system is nonlinear
and memoryless. A square-law device is often found in the receiver front end of
radar and communication devices.

1.8.3 DSP System

Since most signals are analog in nature, an analog signal can be processed
directly in its analog form, as shown in Figure 1.46. DSP provides an alternative

x(0) y(8) =x2(0)

1

FIGURE 1.45 A square-law detector.
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FIGURE 1.46 Analog signal processing.
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FIGURE 1.47 Digital signal processing.

means of processing the analog signal, as shown in Figure 1.47. DSP techniques
are replacing analog signal processing in many fields such as telecommunica-
tions; radar and sonar; digital control; speech, audio, and video processing; and
biomedicine. One main reason for preferring DSP is that, it allows program-
mability, which means that the same DSP hardware can be used for different
applications.

A DSP is a special microprocessor designed for DSP. Most DSPs can be
used to manipulate different kinds of information including sound, images, and
video. The goal of a DSP is to process real-world analog signals. As illustrated in
Figure 1.47, the first step is to convert the analog signal to digital signal using an
ADC. The ADC quantizes the sampled analog signal and codes the quantized
signal into an acceptable format. It is common for the sequence coming from
the ADC to be converted back to analog to drive a motor, a stereo system, or
whatever. The conversion of the digital sequence to an analog signal requires a
digital-to-analog converter (DAC). Most PCs include ADCs and DACs in their
sound card. In these modern days, DSP systems such as high-speed modems and
cell phones are common.

1.9 COMPUTING WITH MATLAB®

A brief introduction to MATLAB is given in Appendix C. The reader is encouraged
to read Appendix C before proceeding with this section.

MATLAB provides built-in functions for unit step function u(f) and unit impulse
function 6(7). The unit step function is called Heaviside or stepfun, while the
impulse function is Dirac. Heaviside(?) is zero when < 0, 1 for #> 0 and 0.5 for r = 0.
stepfun(t,t0) returns a vector of the same length at # with zeros for # < 0 and ones
for 7 > 10. stepfun(n,n0) works the same way for discrete signals. Dirac(t) is zero for
all 7, except t = 0, where it is infinite.
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MATLAB treats continuous-time signals differently from discrete-time signals.
We will treat them separately in the following two examples.

Example 1.13
Use MATLAB to plot

(@ The signal x(t) = 10e=°sin(4xt) + 20e~'sin(2xt)
(b) The step function starting at t = 1 and going right

Solution

(@) The MATLAB code is shown in the following:
t = 0.1:2*%pi/100:2*pi % t ranges from 0.1 to 2*pi
x =10* exp(-0.5*t) .*sin(4*pi*t) + 20*exp(-t).*sin(2*pi*t); %
generates values for x
plot (t,x); %plot the signal
xlabel ( ‘t in seconds’)
ylabel (‘signal x(t) ')

We let t vary from 0.1 to 2z s, with an increment of 2x/100 s. Note the use
of the * operator. The terms 10*exp(=0.5*t), 20*exp(-1).* are all vectors. We
use .* instead of * because we want the components of these vectors to be
multiplied by their corresponding components of the other vectors. Thus,
element-by-element operations require a dot before the operator. The plot
is presented in Figure 1.48a.

(b) The MATLAB script for this case is presented as follows:
t =0:0.1:5
t0 = 1;
u = stepfun(t,t0);

25

20 + 4

15 4

Signal x(¢)

FIGURE 1.48 (a) For Example 1.13a and b for Example 1.13b. (Continued)
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FIGURE 1.48 (Continued) (a) For Example 1.13a and b for Example 1.13b.
plot (t,u)

As shown in Figure 1.48b, the plot is a delayed unit step, that is, u(t — 1).

Practice Problem 1.13  Using MATLAB, plot the signal

x(t)= e cos(0.5t+1.2), 0 <t < 20s.

Answer: See Figure 1.49.

0.4 T T T T T T T T T

0.3

0.2

0.1

Signal x(z)

t(s)

FIGURE 1.49 For Practice Problem 1.13.
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Example 1.14

Using MATLAB, plot the following discrete signals:

(b)

1, n=0
3, n=1
xln]=4-2, n=3
2, n=4

0, otherwise

fln] = A@" with A=5 a=-0.6

Solution

(@)

A plot of this discrete signal is generated by the following MATLAB
commands:
n=-3:1:5; % n
x=[ 00013
stem(n, x) ;
xlabel (‘n’) ;
ylabel( ‘x[n]’);
grid;

= -3, -4,..,4,5
0 -2201;

The plot is shown in Figure 1.50a.

The MATLAB code for generating and plotting the discrete signal is as
follows:

n=-5:1:5;

f=5%(-0.6) ."n;

stem(n, f) ;

xlabel (‘n’) ;

ylabel (*f(n)");

FIGURE 1.50 (a) For Example 1.13a. (Continued)
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FIGURE 1.50 (Continued)

40 T T T

20 -

(b) For Example 1.13b.

49

The plot is shown in Figure 1.50b. Notice that f[n] is an alternating exponen-
tial sequence.

Practice Problem 1.14 Use MATLAB to plot the following discrete signals:
. [ 2mn
@@ y[n]z105nﬂ(%) for n =0 to 32.

(b) The exponential sequence in Example 1.12b multiplied by a step sequence.

Answer: See Figure 1.51.

x[n]

(a)

FIGURE 1.51

10 T T T

8 L
6 L

(a) For Practice Problem 1.14a.

20

25

30

35

(Continued)
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(b) n

FIGURE 1.51 (Continued) (b) For Practice Problem 1.14b.

110 SUMMARY

1. A signal is a set of data or function that represents a variable of interest.

2. A system is a device, process, or algorithm that operates on input signal to
yield an output signal.

3. A signal may be classified in many ways:

a. A continuous-time signal x(f) has a value specified at all time, whereas a
discrete-time signal x[n] is specified only at a finite set of time instants.

b. A periodic signal repeats itself after period 7, that is, x(t + T) = x(¢). An
aperiodic signal is one that is not periodic.

c. An analog signal is one that can take on any value over a continuum;
a digital signal can only take a finite number of values.

d. A signal x(?) or x[n] is an energy signal if and only if 0 < £ < co0 and con-
sequently P = 0, that is, it has finite energy. A signal x(f) or x[n] is a power
signal if and only if 0 < P < o and consequently E = oo; it has finite power.

e. A signal is even if x(f) = x(—f); it is odd if x(f) = —=x(-1).

4. Examples of standard signals are the singularity functions, which include the

unit impulse 8(f) or d[n], the unit step u(f) or u[n], and the unit ramp r(t) or r[n].

The sifting property of the impulse function is

b
j FOS(—1,)dr = £(1,)

In addition to the singularity functions, we consider the unit rectangular func-
tion I1(#/t), the unit triangular function A(#/t), the sinusoidal function, and the
exponential function.
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5. The following operations can be performed on a signal:

a. A signal x(—f) is the time reversal of x(¢); it is obtained by reflecting x(7)
about r = 0.

b. The signal x(af) is compressed if a > 1 or expanded if a < 1.

c. A signal x(t — t,) is delayed by t, seconds, while the signal x(t + 7)) is
advanced by ¢, seconds, assuming ¢, > 0.

d. Amplitude transformations take the general form of y(f) = Ax(?) + B.

6. A system may be classified in many ways:

a. A system is continuous-time if the input and output signals are
continuous-time; it is discrete-time if the input and output signals are
discrete-time.

b. A system is causal if its present response does not depend on the future
values of the input; it is noncausal otherwise.

c. A system is linear if it is characterized by the linearity propertys; it is non-
linear if the superposition does not hold.

d. A system is time-varying if its parameters change with time; it is fime-
invariant if its parameters do not change with time.

e. A memoryless system is one in which the current output depends only on
the current input; a system with memory is one whose output depends on
the present and past or future inputs.

7. Specific applications considered in this chapter are electric circuits, square-
law device, and DSP system.

8. MATLAB can be used to process continuous-time and discrete-time
signals.

REVIEW QUESTIONS

1.1 Which of the following is not a signal?
(a) Voltage, (b) blood, (c) torque, (d) pressure, (¢) displacement
1.2 Any set of mathematical relationships between input and output variables con-
stitutes a system.
(a) True, (b) false
1.3 Which of the following is not a system?
(a) Automobile speed, (b) a circuit, (c) a camera, (d) a computer program
1.4 The exponential signal is
(a) A power signal, (b) an energy signal, (c) neither a power nor an energy signal
1.5 The signals 8(¢), u(f), and r(f) are known as
(a) Transformation functions, (b) expansion functions, (c) singularity func-
tions, (d) basic functions
1.6 Which of these is not true?
(@ 251 =0
(b) cos(®)d(r) = d(r)
(¢) sin(®)d(t—n) = d(t—m)

) J Qe +1D3()dt =1
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1.7 Given the signal x(7), which of the following is true for signal x(27 + 8)?
(a) x(f) shifted to the left by eight units
(b) x(f) is compressed by a factor of 2 and then shifted left by four units
(c) x(¢) is expanded by a factor of 2 and then shifted right by four units
(d) x(7) is reflected about the vertical axis and then shifted

1.8 A system is described by y(f) =cos x(f) + 2 sin x(t — 1). It is
(a) Causal, (b) noncausal, (c) memoryless, (d) with memory

1.9 Causal systems are also referred to as physically realizable systems.
(a) True, (b) false

1.10 The impulse function in MATLAB is
(a) Heaviside, (b) stepfun, (c) Dirac, (d) stem

Answers: 1.1(b), 1.2(a), 1.3(a), 1.4(c), 1.5(c), 1.6(c), 1.7(b), 1.8(a,d), 1.9(a), 1.10(c).

PROBLEMS
SECTION 1.3—CLASSIFICATIONS OF SIGNALS

1.1 Show that the complex sinusoidal signal x(t) = Ae’*" is periodic.
1.2 Find the energy content of

e, 120
x(t) =
{ 0, <0

and determine whether it is a power or energy signal.
1.3 Let

e sint, >0
x(r) = .
0, otherwise

calculate the energy content of the signal.
1.4 Find out if the following signals are power or energy signals or neither:
(@) x(r) = 10sin2mt
() y(t)=2[u(r)-u(t-4)]
© 20 =r(O-r-2)
(d) h( = 10e*
1.5 Repeat Problem 1.4 for the following signals:
@ x(0) = e~ 'u(®)
() x(7) = (e + Du(?)
© x(®) =t"2u(-2)

SecTioN 1.4—BAsic CONTINUOUS-TIME SIGNALS

1.6 Express the signals in Figure 1.52 in terms of the unit step function.
1.7 Express the signals in Figure 1.53 in terms of the unit step and unit ramp
functions.
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x(t,
,(.) y(8)
A
2
1
2 -1 o 1| 2 3] ¢ 2 10 1 2 ¢
-2 -2

FIGURE 1.52 For Problem 1.6.

x(t)

A y(8)
A
10
4
o 2 [2 ¢ ol 2 |a i
-5
-3
(a) (b)
FIGURE 1.53 For Problem 1.7.
0, t<0
8, O0<t<?2
1.8 If x(r) =
2t+6, 2<t<6
0, t>6

Express x(f) in terms of singularity functions.
1.9 (a) Express x(¢) in Figure 1.54 in terms of the unit step function.
(b) Sketch the derivative of x(7).

x(t)
A

10 10e~*

~+~V

-10

FIGURE 1.54 For Problem 1.9.
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¥(2)

P
—~

~
=

(a) (b)

FIGURE 1.55 For Problem 1.10.

1.10 Express x(f) and y(7) in Figure 1.55 in terms of the step function.
1.11 Using Euler relation, prove the following trig identities:

(a) cos’t =Y4(1 + cos2r)

(b) sin(x + y) = sinxcosy + cosxsiny

(c) sinxsiny = Y2cos(x—y)—Y2cos(x + y)
1.12 Evaluate the following:

©
N

(@ |e’8(t-3)dt
(b) ( exp(t® =2t +1)3(t —2)dt

00

©
N

© [560) +e7'8(t) +cos 2m5(t)] dt

—0

1.13 Evaluate the following integrals:

1

(a) ] u(L)di

1
4

(b) .r(t —Ddt

0
4

(© .(t—6)28(t —2)dt

0
4

@ [ 20°8(t — 4) dt
%

1.14 Evaluate the following derivatives:

d
(a) E[u(r —Du(t+1) ]

d
b — - -
(b) 0 [r(t—6)u(t—2)]

dr .
(© E[sm4tu(l—3)]
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SecTiON 1.5—BAsic DiSCRETE-TIME SIGNALS

1.15 Sketch the following discrete-time signals:
(@ x[n] =4(=09)",n>0
(b) x[n] =2(1.2)",n >0
(©) x[k] = (0.8)* sin(2nk/8), k > O

n 1< >
1.16 Sketch x{n]= {10(0.6) , —3<n>3

0, otherwise
1.17 Sketch the following discrete-time signals:

_JL 3<n<3

@ anl= {0, otherwise
1, n=-1
2, n=0
(b) x(1) =11, n=2
2, n=3

0, otherwise

(¢©) x[n] = 2 sin(n/4)cos(nw/8)
1.18 Sketch the following signals:
(@) x[n] = u[n-2]
(b) yln] = uln +2]
(© zln] = ulnl-uln—4]
1.19 Sketch the following discrete-time signals:
(@) x[n] = x[n] + u[—n]
(b) x[n] = u[3n]
(©) x[n] = 10sin(2wn/20)
1.20 Represent the signal in Figure 1.56 as a sum of impulses.

SECTION 1.6—BAsIC OPERATIONS ON SIGNALS

1.21 Let x(r) = 10¢*3. Evaluate and simplify each of the following:
(@) x(2)
(b) x(1 - 1)

x[n]
A

=t _
—
no
[°~]
o=
|
—
(93]
N 4

FIGURE 1.56 For Problem 1.20.
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. /

0 1 2
FIGURE 1.57 For Problem 1.22.
x(8)
2
0 1 2 3

FIGURE 1.58 For Problem 1.24.

©) x(t/4 +1)
(d) Yalx(j) + x(=j)]
1.22 Given the signal x(f) shown in Figure 1.57, sketch (a) x(#/2) and (b) x(1 + #/2).

t+1, O0<t<4
1.23 If x(r) = ., sketch (a) x(r) and (b) y(f) = 1 + x(21).
0, otherwise

1.24 If x(7) is the signal shown in Figure 1.58, sketch (a) x(r — 2), (b) x(3f), and
© y@® =1+ 2x(@).
1.25 Sketch each of the following continuous-time signals and their derivatives:
(@) x(t) = u(t)—u(t—1) and dx/dt
(®) y(®) = ut + 1)2u(®) + u(—1) and dy/dt
© z(t)=t[u(t+1)-u(t-1)] and dz/dr
1.26 Given that x(¢) = u()-u(t—1), sketch
@ Y@ = x(=0)
(b) y(®) = x(3—1)
© y@® = x(-3)
1.27 If x(r) = II(z + 2) + [1(t—2), sketch
@ y(@) =x(-2)
(b) y(®) = x(t + 1)—x(t-1)
1.28 Sketch these signals:

@ uf (1-1)/2]
(b) r[4-21]
© T(=2r + 1)

«) A[(z—l)/3]
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Ax(t)
4
-2 0 2 t
-4

FIGURE 1.59 For Problem 1.29.

1.29 Given x(?) in Figure 1.59, sketch
@ y@® =—x(t=1
(b) z(t) = 4x(t/2)
© h@®) =x2-1)

1.30 Given the two signals x,(f) and x,(¢) in Figure 1.60, sketch the following:
@ O = x,0) + x,0)
(b) z(® = 0.5x,(20) + x,(t)
© ) = x,=D=xy(1-1)

1.31 Given the discrete-time signal in Figure 1.61, sketch the following signals:
(@ y[n] = x[n—3]
(b) z[n] = x[n]—x[n—1]

1.32 Consider the discrete-time signal in Figure 1.62. Sketch the following signals:
(@) x[n]u[2—n]

(b) x[n] [u [n+1]- u[n]]
(©) x[n]d[n-2]
SECTION 1.7—CLASSIFICATIONS OF SYSTEMS

1.33 Show that the system described by the differential equation

dy(t)

2 =
5 2D =x@)

is linear.

x,(2) ()
A

FIGURE 1.60 For Problem 1.30.
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x[n]
2@
1
-3 -2 -1 T
L 4 *—>
—ll 0 1 2 3 4 n
-2
FIGURE 1.61 For Problem 1.31.
x[n]
2
1
T T T H
-4 13 -2 -1 0 1 2 i 4 n
-1 -1

FIGURE 1.62 For Problem 1.32.

1.34 Show that the system described by the differential equation

dfl(t) +4y(1) +1= x(1)

is nonlinear.
1.35 Which of the following systems can be classified as linear/nonlinear,
time-varying/time-invariant?

@ & 2 D oy = £ 1)
dy( )

d’ y(t)
b
(b) g% +y(1) =4f()

© 410 d3y<r> 5 dy(®)
dr* dar’ dt

Xi L D 2= £y

+y(1)

df (t)

)= —4f@)

) ¢
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1.36 Determine which of the following systems is linear:
(@) y(t) = exp[x(t)]
(b) y(®) = cosx()
© y0 =x)

1.37 Determine which of the following systems is linear or nonlinear:

@ Y, y(t) = x*(t)
dt

d 2
(b) [yj +y(t) = x(1)
dt

© y(1)= jx(de

1.38 Determinewwhether the discrete-time system described by y[n] = nx[n] is
time-varying.

1.39 Determine whether the following systems are causal or noncausal, memoryless
or with memory.
(@) y(®) = e*Osint

(b) y(r) = on(r)t dt

1.40 Consider the integrator
1
0= [ sy
0

Check for time-invariance.

1.41 Show whether the following systems are time-invariant:
@ y) =tx(@) +5
(b) ylnl = x*[n]

SECTION 1.8—APPLICATIONS

1.42 The unit delay element is shown in Figure 1.63a. Determine the input—output
relation for the system in Figure 1.63b.

1.43 Write the differential equation for i(f) in the circuit of Figure 1.64. Assume that
the capacitor is initially uncharged and that the switch closes at 7 = 0.

1.44 Write the system equation for the electric circuit of Figure 1.65.

1.45 Consider the RC circuit in Figure 1.66. Obtain the relationship between the
input x(f) and the output y(?).

SectioN 1.9—CompUTING WiITH MATLAB®

1.46 Determine the numeric value of x in each of the following MATLAB
instructions:
(a) t=pi/3; x =cos(f)
(b) t = 1:4; x = 2*sin(7)
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x[n] Unit ylnl=x[n-1]
delay
()
xln] » yln
Unit
delay |«
(b)

FIGURE 1.63 For Problem 1.42.

~
I
o

=

FIGURE 1.64 For Problem 1.43.

2Q 3Q

R
x(t) 40 10N 50

FIGURE 1.65 For Problem 1.44.

x(8) C —

FIGURE 1.66 For Problem 1.45.
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1.47 A signal is given by

cos(3000mtt), O0<r<10ms
x(t) =

0, otherwise

Use MATLAB to plot the signal.
1.48 Use MATLAB to plot the signal

2t, 0<t<l1
y(t) = %(t2—4t+3), l1<t<3

0, otherwise

1.49 Use MATLAB to plot these discrete-time signals:
(@) x[n] =10(0.7)", n >0
(b) y[n] =10(1.2)", n > 0
1.50 Use MATLAB to plot the following signals over -2 <t < 4 s:
@ x(=2r@)
(d) y(©) = 5¢" u(®)
(©) z(H) =4 cosdt + 2 sin(2t — n/4)
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2 Convolution

The reason why we have two ears and only one mouth is that we may listen the more
and talk the less.

—Zeno

ENHANCING YOUR COMMUNICATION SKILLS

Ability to communicate effectively is regarded by many as the most important step to an executive
promotion.

Taking a class in signals and systems is a means to preparing yourself for a career in
electrical engineering. Enhancing your communication skills while in school should
also be part of that preparation because, as an engineer, a large part of your time will
be spent in communicating. No matter how hard you try, you cannot avoid commu-
nication. Virtually everyone communicates and interacts at work. Communication
skills will be essential to your success as an engineer.

ABET (Accreditation Board for Engineering and Technology) requires that gradu-
ates of engineering programs possess an ability to communicate effectively. It has been
observed that graduating students are poorly prepared with respect to communication
skills. It has also been observed that the ability to communicate is the most important
factor to promotion, more important than motivation, education, and hard work.

63
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Communication is the process of information transfer between the sender and
the receiver through a medium. Oral, written, and graphical communication compe-
tence is an important professional skill for engineers. Professional engineers apply
communication skills for many purposes, for example, emailing messages, describ-
ing solutions, pitching ideas, reporting experiments, discussing work with collabora-
tors or customers, and presenting papers at conferences.

Effective communication is a learned skill. It takes times and effort to develop
these skills and become an effective communicator. Developing the skills while in
school is highly recommended. Look for continuing opportunities to develop and
strengthen your reading, writing, listening, and speaking skills. You can do this
through classroom presentations, team projects, active participation in student orga-
nizations, and enrolment in communication courses. Learn to write good laboratory
reports in terms of grammar, spelling, accuracy, and coherence. The risks are less
here than in the workplace. Effective communication can improve relationships at
home, at workplace, and in social situations.

2.1 INTRODUCTION

As we saw in Chapter 1, a system may be regarded as a process that transforms an
input signal into an output signal. The system must be capable of accepting input
signals, operating on them, and producing output signals. The behavior of the system
can be described mathematically either in the time domain, as is done in this chapter,
or in the frequency domain, as in later chapters.

In this chapter, we will seek to understand a technique called convolution, which
is a tool for time-domain analysis of systems. We will learn how to apply it in finding
the response of LTI (linear, time-invariant) systems to input signals. The reason we
limit our discussion to LTI systems is twofold. First, several physical systems can be
modeled as LTI systems. Second, no general procedures exist for non-LTI systems.
LTI systems can be analyzed in great detail because standard procedures are already
available.

We will begin with applying convolution to continuous-time systems; we later
will apply it to discrete-time systems. We use MATLAB® for evaluating the convo-
lution of two signals. We will finally show how convolution can be applied in deter-
mining system stability and analyzing electric circuits.

2.2 IMPULSE RESPONSE

We recall from Chapter 1 that if x(¢) is the input signal and y(?) is the output signal or
response of a system, they are related through a transformation

y(t) =T x(1) 2.1)

where T is an operator transforming x(7) into y(f). The impulse response h(f) is the
response of the system when the input is the unit impulse function 8(7), that is,

h(t) =T () 2.2
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The impulse response to an LTI system is the output of the system to a unit impulse
function.
From Table 1.1, the input x(r) can be expressed as

e}

x(t)= j x(0)d(t —1)dr 2.3)

—0

where T is a dummy variable. Equation 2.3 is the sifting property of the unit impulse.
The response y(f) to the input x(f) is obtained by combining Equations 2.1 and 2.3:

©

y@)=Tx(t)=T J‘x(r)8(t —1)dt

—0

= j x(OT{8(t—1)}dr (2.4)

—o0

in which the interchange of operations is allowed by virtue of the system’s linearity.
Since we are assuming that the system is time-invariant, Equation 2.2 implies that

h(t—1) =T {8(t - 1)} 2.5)

From Equations 2.4 and 2.5, we get

©

y(t) = j x(Dh(t—1)dt 2.6)

—0

This shows that an LTI system is characterized by its impulse response.

2.3 CONVOLUTION INTEGRAL

Equation 2.6 is known as the convolution integral or superposition integral. The
convolution integral occurs frequently in science, mathematics, and engineering.
The convolution of two signals x(f) and h(f) is usually written in terms of the
operator * as

©

y(&) =x(@)*h(t) = I x(Dh(t —1)dt 2.7)

—0
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x(2) LTI y(t) =x(t)*h(z)
—> system [ >

FIGURE 2.1 An illustration of convolution in an LTI system.

that is, y(f) equals x(f) convolved with A(f). The asterisk denotes convolution in this
chapter and should not be confused with complex conjugate. A block diagram illus-
tration of convolution is given in Figure 2.1.

We can split the integral in Equation 2.7 into two parts:

1% 0

¥t = () h() = j X(Oh(t—T)dT+ jx(r)h(r CDdt== v () 2.8)

—00 1o
—_— [ ——

Yzir Yasr

where
v.;;(t) 1s the zero-input response (or the natural response) of the system
V..+(t) 1s the zero-state response (or the forced response) of the system
t, is the initial time

Thus, the complete response of a physical system is divided into the zero-input
response and the zero-state response.

The convolution integral in Equation 2.7 is a general one. It applies to any LTI
system. However, the convolution integral can be simplified if we assume that a sys-
tem has two properties. First, if x(f) = 0 for # < 0, then

y(t)= I x(Dh(t—1)dt = Jx(r)h(t —1)dt 2.9)
—0 0

Second, if we assume that the system is causal, /() = 0 for # < 0, then

h(t—7t)=0fort— 7 <0ort >t so that Equation 2.9 becomes
t
y()=x(t)*h(t) = Jx(r)h(t —1)dr (2.10)
0

Some important properties of the convolution integral are listed in Table 2.1.

Property #1 states that the order in which two functions are convolved is unim-
portant. We will see shortly how to take advantage of this commutative property
when performing graphical computation of the convolution integral.

Another important property of the convolution integral is the width property.
If the durations of x(f) and h(f) are T, and 7,, respectively, then the duration of
() =x@©*h() is T, + T, as illustrated in Figure 2.2. If the areas under x(r) and h(f) are
A, and A,, respectively, then the area under y(f) = x(f)*h(f) is A,A,. That is,

Area under y(t) = Area under x(¢) x area under h(?) (2.11)
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TABLE 2.1

Properties of the Convolution Integral

L x()* h(t) = h(1)* x(t)  (Commutative)

2. F(O)*[x(t) + y(O)] = f(O)* x(t) + f(£)* y(r)  (Distributive)
3. FO*[(x(@) * y()] = fI(t)* x(1)]* y(t)  (Associative)

4. f()*3(t) = If(1)5(l—f)dt =f()

5. Ay 8(1—1,) = fli—t,)

6. fO*' ()= I f(OJ'(t—vdu=f'(t)

7. f(@) % u(r) = j Foutt—yde = j Foyde

o

8. u()*d'(1)= J. w(t)d'(t —t)dt =u'(t) = 8(¢r)
9. Tf x,(1)* x,(1) = (1), then
x(t+t)*x(t+ )=yt +1,+1,)

x(t) h(t) x(t)*h(t)

/2 G VNEYe N

«—

“t I
T, T, T+ T,

FIGURE 2.2 The width property of convolution.

Of course, this does not hold for signals extending to +co.
We can also add that if

then

xi(0)* x (1) = y(1)

x(+1)* @)=y +1)

xl(t+t1)*x2(t+t2)=y(t+tl +t2)

y(at) = ax,(at)* x,(at), a>0 (time scaling)

y(—t)=x(—t)* x,(—t)  (time reversal)

67
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2.13)

2.14)

.15)
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TABLE 2.2
Abbreviated Convolution Table
No. X4(6) X,(8) X1(O* x,(O

. x(1) 8(1) x(1)
2. u(t) u(t) tu(t) = r(t)

at

e 71u(t)
a

3. e u(t) u(t)

4. e u(f) e u(r) 5 |:efb/ *€7a1j|u(t)
a—

at t 1 bt at
5. e u(t) e u(r) b a |:e —e }u(t)
6. e u(t) e u(t) te® u(r)

1
7. te u(r) e u(t) Etze‘”u(t)

The convolution integral can be evaluated in three different ways:

1. Analytical method, which involves performing the integration by hand
when x(f) and h(f) are specified analytically.

2. Graphical method, which is appropriate when x(f) and A(f) are provided in
graphical form.

3. Numerical method, where we approximate x(f) and h(f) by numerical
sequence and obtain y(f) by discrete convolution using a digital computer.

We will apply the analytical method right away and apply graphical and numerical
methods later. Table 2.2 shows some common signals and their convolution.

Example 2.1
Obtain the convolution of these two signals:

x=e* and y©)=22 forallt.
Solution

Let z(t) = x(0*y(t). We first get x(t) = e and y(t—7) = 2(t—7)2. Applying Equation 2.6,

we obtain

=2t I e du— 4tj e " dt+2 j e " dr 2.1.1)

—0 -
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The first integral on the left side is given by

©

J' e “di=+n 2.1.2)

—0

The second integral is zero because the integrand is an odd function of 7. The
third function

j e dt = ZJ- e dt :§ (2.1.3)
o 0

substituting Equations 2.1.2 and 2.1.3 into Equation 2.1.1 gives

2(6) = 28Jn -0+ /n

=3.545t* +1.772, forallt

Practice Problem 2.1 Determine the convolution of f(t) = e

Answer: 0.4431t.

and g(t) = t.

Example 2.2

The input x(t) and the impulse response h(t) of an LTI system are given by x(t) = u(t)
and h(t) = e~*tu(d). Find the output response.

Solution
From Equation 2.6,

V(o) = J' x(Dh(t — Dt = ju(r)e’3("‘)u(t _dk 2.21)

In this integral, t is a constant so that we can pull out the factor e=t.

By definition,

1, >0

u(t) = N
0, <0
1, t-t>0 |1, <t
ult—1) = =

0, t—-t<0 0, 1>t

Thus,

1, O<t<r

u(tult —1) = {

0, otherwise
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The limits on the integral now becomes 0 < t© < t. Therefore, Equation 2.2.1
becomes

or

y(o) = %m —eMult)

Practice Problem 2.2  Consider a system in which the input x(t) = r(t) = tu(t) and
the impulse response h(t) = u(t). Determine the output y(0).

Answer: y(t) = 0.5t2u(b).

2.4 GRAPHICAL CONVOLUTION

We now consider graphical method of evaluating the convolution integral. This
method usually involves four steps:

1. Folding: Take the mirror image of h(t) about the ordinate (or vertical) axis
to obtain h(-7)

2. Shifting: Displace or shift h(—7) by ¢ to obtain A(t — 1)

3. Multiplication: Multiply h(t — 7) and x(t) together

4. Integration: For a given t, integrate the product A(t — T)x(t) over 0 <t < f to
get y(r) at t

The folding operation in step 1 is the reason for the term convolution. The function
h(t — 7) scans or slides over x(7).

To apply this procedure, we must be able to sketch h(t — ). Sketching A(t — 1) is
the key to the convolution process. It involves reflecting /(t) about the vertical axis
and shifting by ¢. This is illustrated in Figure 2.3. Analytically, we obtain A(f — t) by
replacing every ¢ in h(f) by ¢ — t. Since convolution is commutative, it may be more
convenient to apply steps 1 and 2 to x(f) instead of A(f).

Example 2.3

Obtain the convolution of the two signals in Figure 2.4.

Solution
Let y() = x(©)*h(t), where x(0) is a unit step and

2+t, -2<t<O0
h(t) =
1, O<t<?2



Convolution 71

h(-1)
h@ i h(t-)
/\ /\ t
.
0 a b v -b —anl) T b t—b (I) t-a T

(@ (b) ©

FIGURE 2.3 Folding and sliding the function A(?).

0 h(?)

FIGURE 2.4 For Example 2.3.

In this case, it is easy to fold x(t), the unit step function. Let

We follow the four steps to get y(t). First, we fold x(t) as shown in Figure 2.5a and
shift it by t as shown in Figure 2.5b.

For t < =2, there is no overlap of the two signals, as shown in Figure 2.6a.
Hence,

vy =x®*ht)=0, t<-2 (2.3.1)

x(=T) x(t-1)

(a) (b)

FIGURE 2.5 For Example 2.3: (a) Folding x(f) and (b) shifting x(—7) by ¢.
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¥ h(t) h(t)

NS}

x(t—1) *(t=7)

2“ w10 ‘ Y
x(¢t-T) x(t-T)
¥‘| \ =7
{2 0¢2 1 t -2 0 2t T

FIGURE 2.6 For Example 2.3: Overlapping of x(t — ) and A(z) for (a)  <-2, (b) 2 <t <0,
©0<t<2,and (d)t>2.

For =2 < t < 0, the two signals overlap between -2 and t, as shown in Figure 2.6b.

t
-2

y(0) = Ih(t)x(t —9dt=Q2+1)()dt _tz =20+ %
-2

=0.5t7+2t+2, —-2<t<0 (2.3.2)
For 0 < t < 2, the two signals overlap between -2 and ¢, as shown in Figure 2.6c.

t

0
y(t)=| 2+ 0Mdt+ | (2)(Nd
fosonen |

0
2310
=[2‘E+TJ
2

=4-2+2t=2(t+1), O0<t<2 (2.3.3)

t
+ 21
0

For t > 2, the two signals overlap between -2 and 2, as shown in Figure 2.6d.

2

0
yi) =1 2+1(dt+ | 2)(Ndt
oo

0
2 )0 2
= 2r+? +2r0:4—2+4=6/ t>2 (2.3.4)
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~ Vv

-2-10 1 2 3 4

FIGURE 2.7 For Example 2.3: Convolution of signals x(#) and A(?).

Combining the results in Equations 2.3.1 through 2.3.4, we obtain

0.5 +2t+2, -2<t<0
o(t) = 2t+7), 0<t<2 (2.3.5)
6, t>2

0, otherwise

which is sketched in Figure 2.7. Notice that y(t) in this equation is continuous; that
is, it has no discontinuities. This fact can be used to check the results as we move
from one range of ¢ to another.

Practice Problem 2.3  Find the convolution of the two signals in Figure 2.8.

Answer: z(t) = x(t) * y(t) =

%(3+2t—t2), 2<t<3

0, otherwise
x(t) ¥(2)
A
2
1 1
0o 1 B o 1 2 ¢

FIGURE 2.8 For Practice Problem 2.3.
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x1(2) %5(2)
A
1
1 e
0 1 ¢ 1o 1

FIGURE 2.9 For Example 2.4.

Example 2.4

Given x,(t) and x,(t) in Figure 2.9, find y() = x,(0* x,(0.
Solution
We fold x;(t) so that

V(0 = 0 * (0 = j Xt - Dx,(0)d

For t < -1, there is no overlapping, as shown in Figure 2.10a. Hence, y(t) = 0.

For -1 < t < 0, there is overlapping between -1 and ¢, as in Figure 2.10b,

¢ _ )3 t 3
y(t):_[(t—m)dr:(t_;) _1=(”3”  _1<t<0

1 =0 | w0

] ]
(< R (- ~ TN R
t -1 0 1 T -1 ¢t O 1 T

() (b)
1 0 1=
(t_T)Z — (
(t—r)2 /V \

-1 t-10 ¢ 1 VT -1 ¢t 0 t-11 ¢t :

(©) (d)

FIGURE 2.10 For Example 2.4: (a) r <—1, (b) -1 <1<0,(c)0<t< 1,and (d) > 1.
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For 0 < t < 1, the two signals overlap between t — 1 and ¢, as shown in Figure 2.10c.

For 1 <t < 2, they overlap between t — 1 and 1, as depicted in Figure 2.10d.

t—1’°
-3

1 .
:l—l(t—1)3, 1<t<2
t-1 3 3

%(t+1)3, -1<t<0
1
y(o) = 3 O<t<1
T 1, .
g-g(t-‘l), 1<t<2
0, otherwise

Practice Problem 2.4  Graphically convolve x(t) and y(t) shown in Figure 2.11.

l(Fc:osrct), 0<t<1
b
Answer: z(t) = x(t) * y(t) = l(cos at-10, 1<t<2
b
0, otherwise
x(t) ¥(8)
A
1
1 ¥ sinmt
0 1 =t 0 1 =t

FIGURE 2.11 For Practice Problem 2.4.
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2.5 BLOCK DIAGRAM REPRESENTATION

The commutative, associative, and distributive properties of the convolution integral,
listed in Table 2.1, can be illustrated in the block diagrams shown in Figure 2.12.
Notice that the commutative property, illustrated in Figure 2.12a, shows that x(7) and
h(?) are interchangeable. The associative property, illustrated in Figure 2.12b, states
that a series or cascaded arrangement of LTI systems can be replaced by a single
system using convolution. The distributive property, illustrated in Figure 2.12c,
indicates that a parallel arrangement of LTI systems can be combined into a single

system through addition.

Signals and Systems: A Primer with MATLAB®

Example 2.5

Find the impulse response of the system shown in Figure 2.13. Let

Solution

h(t) = 3(t)
hy(t) = 2e~u(p)
hs(t) = 4e™u(t)
ha(©) = e 'ult)

Comparing Figure 2.13 with Figure 2.12, we notice that

ht) = h(6) * hy () + hs () * hy(2)

x(t) —>|

(c)

FIGURE 2.12 Block diagrams illustrating properties of convolution.

A 4

¥(®)

x(t)

x(t)  —> ()

Iy (8o (2)

— ¥(2)

hy(2) + hy(t)

— y(2)

(2.5.1)
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hy

A 4
=
w
A 4

x(2) ()

A 4
=
—
A 4
=
)

FIGURE 2.13 For Example 2.5.

Using the fact that x(0)*8(t) = x(t), we obtain the first convolution on the right-hand

side as

Iy(t) * a(0) = 38(0) * { 26~ u(0)} = 6e~'u(t)
For the second convolution,

hy(6)* ha () = I de 2 u(e (e — D

—0

but

DUl —) = {1, O<t<t

0, otherwise

Therefore,

t
hs(6)* hy(t) = J'4e’zre’3“’”dr = 4e’3‘J’e(3’2”d‘r
0

Substituting Equations 2.5.2 and 2.5.3 into Equation 2.5.1 gives

h(t) = 6e'u(t) + 4e™ — e )u(t)

Practice Problem 2.5 For the system shown in Figure 2.14,

h(t) = 2e™ult)

hy(t) = 4e~ult)

Determine the overall impulse response h(t).

Answer: h(t) = 8(e~t—e~2)u(t).

(2.5.2)

(2.5.3)

77
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x(t) —> Iy >y ()

FIGURE 2.14 For Practice Problem 2.5.

2.6 DISCRETE-TIME CONVOLUTION

When an input is applied to a discrete-time system, the response or output sequence
can be determined in a way similar to using the impulse response and the convolu-
tion integral for continuous-time systems. To refresh our mind, we will redefine the
unit step sequence u[n] as

m={" "0 (2.16)
uin| = .
1, n=20

The unit impulse sequence is also redefined as

8] = 0, n=#0 017
= , n=0 '

The signal only has value at n = 0. The displaced delta function is

0, n#k
on—k]= { (2.18)
, n=k

We said in Chapter 1 that an alternative way of expressing any discrete signal x[n] is

0

x[n] = Z [k18[n— k] (2.19)

k=—o0

that is, we can represent x[n] as a weighted sum of delayed impulses. The multiplica-
tion property of the impulse function is

8[n]1x[n — k] = x[-k18[n]| (2.20)

d[n—k]x[n] = x[k]o[n—k] (2.21)

The impulse response A[n] of a discrete-time LTI system is the response of the sys-
tem when the input is 9[f], that is,

hln]=T{o[t]} (2.22)

This is illustrated in Figure 2.15.
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System

S[n] — —> h[n]

FIGURE 2.15 Block diagram illustrating impulse response.

The convolution of the discrete input signal x[r] and the impulse response A[n] is

ylnl= x[n]* hn] (2.23)
and is defined as
yinl= Zw: x[k]hln — k] (2.24)
f—e
Thus,
ynl = x[n]*h[n] = Zw: x{k]h[n —k] (2.25)
P

This is known as the convolution sum or superposition sum for the system response.
Notice that as in continuous-time convolution, one of the signals is time-inverted,
shifted, and then multiplied by the other. By the change of variables m = n — k or
k =n—m, we have

yinl= Z him)x[n —m] = h[n]* x{n] (2.26)

m=—o

This shows that the order of summation is immaterial; that is, discrete convolution
is commutative. This and other properties of the convolution operation are listed in
Table 2.3. It is evident from the convolution sum in Equation 2.23 that if we know
h[n], we can find the system response y[r] to any input x[n] (Figure 2.15).

TABLE 2.3

Properties of the Convolution Sum

1. x[n]* h[n] = h[n]* x[n] (Commutative)

2. fInl*[x{nl+y(nl] = fln]* x[n]+ fln]*yn]  (Distributive)
3. fln]*[x{n]* ylnl] = [ fln]* 2ln]]* yn] ~ (Associative)

4. x[n—m]*hln—k]=y[n—m—k] (Shifting)
5. x[n]* 8[n] = x[n]
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If both x[n] and h[n] are causal, that is, x[n] and h[n] are zero for all integers n < 0,
the summation in Equation 2.25 becomes

y[n] = Zh[k]x[n —kl, n=0 2.27)

k=0

where y[n] =0 for n < 0.
The convolution of an M-point sequence with an N-point sequence produces an
(M + N — 1)-point sequence.

Just as the continuous-time convolution involves some steps, evaluating the convolu-
tion sum requires the following steps:

1. The signal A[k] is time-reversed to get i[—k] and then shifted by # to form A[n — k]
or h[-(k — n)], which should be regarded as a function of k£ with parameter 7.

2. For a fixed value of n, multiply x[k] and h[n — k] for all values of k.

3. The product x[k]h[n — k] is summed over all & to produce a single value of y[n].

4. Repeat steps 1-3 for various values of n to produce the entire output y[n].

Table 2.4 presents a list from which convolution sums can be determined directly for
a variety of signal pairs.

Example 2.6

Let r[n] be the convolution of two unit step sequences, that s,

rln] = uln]* uln]

TABLE 2.4

Abbreviated Table for Convolution Sums
No. x,[n] X,[n] X, [n]* x,[n]

1. x[n] d[n—kl  x[n-k]

2. uln] uln) (n+ Duln] = r(n]

3. a'u[n] uln] |:1 ;_aM }u[n]

n+l n+l
4. awln]  buln] [” _Z }u[n]

5. uln] nuln) Y2 (n)(n + 2)ulu]
6. nuln] nuln] én(n +1D)(n—1u [n]

7. a'uln] nul[n] |: (l—a)z }t[n]

8. a'u[n] a'u[n] (n + Da'u[n]
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Find r[n].
Solution

©

rin] = uln]*uln] = Z ulkluln - k]

k=0

The functions ulk], u[-k], and u[n — k] are shown in Figure 2.16. The convolution
takes place when we multiply the sequences in Figure 2.16a with Figure 2.16¢
and d. It is good to show u[n — k] for n < 0 and for n > 0 as in Figure 2.16c and d,
respectively. For n < 0, the nonzero values of u[k] and uln — k] do not overlap
so that ulklu[n — k] = O for all values of k. This implies that r[n] = 0 for n < 0. For
n > 0, the nonzero values of u[k] and uln — k] overlap. This overlap begins with
ulk] at k = 0 and ends with u[n — k] at k = n. Hence,

n

rln] = ZU[k]u[n—k] = 2(1) =n+1

k=0 k=0
Therefore,

rln) = (n+Nuln]

This is the unit ramp sequence and is shown in Figure 2.16e.

u(k) u(—k)
0 k
u(n—k)
(k) (for n>0)
(for n<0)

()

FIGURE 2.16 For Example 2.6.
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Practice Problem 2.6 Let the input x[n] and impulse response of a system be
given by

n

xIn)=uln], hln]=a"uln], O<a<1

find the output y[n] = x[n]* hn].

1— an+1

1-a

uln]

Answer: y[n] =

Example 2.7

Consider x[n] and h[n] as shown in Figure 2.17. (The signals are all zero outside the
ranges indicated.) Find y[n] = x[n]*h|[n]:
(@ Analytically and (b) graphically.

Solution
(@) Using Equation 2.19, we can write

xn]=8[n—1+08ln—2]+38[n-3]
hln] = 8[n]+ 8[n — 1]+ 8[n — 2]
ylnl = x[n]* h{n] = x[n]* {8[n] + 8[n — 1]+ 8[n — 1]}
=x[n]+xIn=1+x[n-=2]
=8[n—1]+8[n—2]+8[n-3]
+8[n — 2]+ 8[n — 3]+ 8[n — 4]
+8[n — 3]+ 8[n — 4]+ 8[n - 5]
= 8[n — 1]+ 28[n — 2]+ 38[n — 3]+ 28[n — 4] + 8[n - 5]
This is illustrated in Figure 2.18.
(b) The graphical convolution is shown in Figure 2.19. We do the convolution
forn=0, 1, 2, 3, and 4. Looking at the trend, we can similarly conclude that

forn=15, y =1, and for n > 5, y = 0. Thus, y[n] is as shown in Figure 2.18,
that is,

ylnl=[1, 2,3, 2, 1]

x[n] hln]

—e
—e
—e

v
—e
—e

v

FIGURE 2.17 For Example 2.7.
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012345 n

FIGURE 2.18 For Example 2.7; y[n] = x[n]*h[n].

h{n—k

x[k]

—_
< X
(=N}
—_

-4 -2 0 k 0123 k
h(n-k]
n<0 x[k]h[n—k]
1 y=0
——tooo0——
-2-10 k k
hn—k]

x[k)h[n—K]

|
—
(=
—
>~
— =
%
>

—
<= X

01
hin—k]
n=2 x[k)h[n—k]
101 y=1+1=2 1
—_IJ—'O 1 % 0123 k
1
hn—k] x[k)h[n—k]

+ |
< X
(It
— W
+
_
+
_
I
| w

0123 k 0123 k
hn—k] x[klh[n—k]

—
< x
non
'S

"

_

I

no
| —

01234 k 0123 k

FIGURE 2.19 For Example 2.7(b); graphical convolution.
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x[n] hn]
3
2
! I
01 ’ 012 n

FIGURE 2.20 For Practice Problem 2.7.

yln]
5

—e

0123 n

FIGURE 2.21 Solution for Practice Problem 2.7.

Practice Problem 2.7 Find the convolution of the discrete signals shown in
Figure 2.20. The signals are all zero outside the range indicated.

Answer: See Figure 2.21.

Example 2.8
Consider a discrete-time LTI system for which the input and impulse functions are
given by

x[n]=(0.7)"uln]),  hln]=(0.2)"uln]

Find the response y[n].

Solution

0

ylnl = xIn] * hln] = Z XkIhln = k]

k=—x

But x[k] = (0.7)kulk] and h[n — k]= (0.2)"~* u[n — k]
Because x[n] and h[n] are causal, we can use Equation 2.27.

n

yln] = xIn)* hln] = 2(0.7%(0.2)"*, n=012,...

k=0

n k
= (0.2)"2[%)

k=0



Convolution 85
This is a geometric series. We notice from Appendix A,
s
—~\ b 1-(a/b)

Takinga = 0.7 and b =0.2

,1-(0.7/0.2""

_ - _ n+l n+1
yinl=02" = 2[0.27-07"]

Therefore,

ylnl=2[(0.7)"=(0.2"" Juln]

Practice Problem 2.8 Suppose for a discrete-time LTI system, the input x[n] and
the impulse response h[n] are

x[n) = 4"uln] and h[n] = uln]

Find the output signal y[n].

4™ n<0
Answer: y[n]=
/ %’ n>0

2.7 BLOCK DIAGRAM REALIZATION

Just as with continuous-time case, we can find the impulse response of systems
connected in series (cascade) or in parallel. Figure 2.22a illustrates the commuta-
tive property, that is, x[n] and h[n] are interchangeable. The associative property,
illustrated in Figure 2.22b, shows that when two systems (with impulse responses
h,[n] and h,[n]) are connected in series, the overall impulse response is &, [n]*h,[n].
The distributive property, illustrated in Figure 2.22¢, shows that when two sys-
tems are connected in parallel, the impulse response of the composite system is
h[n] + h,[n].

2.8 DECONVOLUTION

We know that if the impulse response h[n] of a system is known, we can find the
response y[n] to an input x[n] as simply the convolution of x[n] and A[n]. If we know
x[n] and y[n], how do we get h[n]? The process of getting h[n], given x[n] and y[n],
is known as deconvolution. The process is also known as inverse filtering or system
identification.
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x[n] —>| hln] —>y[n] = hin]—> xn] sp—> yln]
(a)
str)—f il (> bl [ = L nholn) |—e yin)
y}’l
(b)
> hy[n]
x[n] —] Al xln) | Iy(8) + holt) | yln]

()

FIGURE 2.22 Block diagrams illustrating interconnected systems.

Deconvolution is the process of obtaining one of the constituent signals in the
convolution sum.

Deconvolution is often encountered in practice when trying to measure the
response of the communication channel. It has no direct mathematical definition in
the continuous-time domain. Discrete convolution can be done in two ways: poly-
nomial division and recursive algorithm. Both methods will be shown in the fol-
lowing example. We will also use a MATLAB command for performing discrete
deconvolution.

Example 2.9

Let x[n] = {3, 0, 2, 6} and y[n] = {6, 10, 25, 20, 38, 42}. Find hin].

Solution
We will obtain the corresponding h[n] in two ways.

Method 1 (Long division):
We regard the given sequences x[n] and y[n] as coefficients of the following poly-
nomials in descending order.

x(z) =372’ +02° +27+6, y(z)=62° +127* +257° +207° + 38z + 42
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We now perform a long division y(z)/x(z).
22° +4z+7
372 + 07 +2z+6)6z5 +127* +257° +207% + 38z + 42
67° +0z* +47° +127
127* +217° +82° +38z + 42
12z* +02° + 8% + 247
212> + 02> +14z + 42
2122 +02° +14z+ 42
0
From this, we obtain the polynomial h(z) = 22> + 4z + 7 or h[n] = {2, 4, 7}.
Method 2 (recursive algorithm):
By definition,
ylnl = xn* hin] = > hlkix(n — k] (2.9.1)
k=0
This convolution sum can be cast as a recursive algorithm. For n = 0,
y[0] = x[0]h[0] — A[O] = y[O]/ x[0]=6/3 =2 (2.9.2)
We separate the term containing x[0] in Equation 2.9.1.
n-1
ylnl = hlnlx[O] + Z hlk]x[n —k] (2.9.3)
k=0
From this, we obtain for n > 0,
,I n-1
hinl = —| yInl= » hlklx[n—k] (2.9.4)
x[0] {y ; }

We will need to evaluate this at N —N, + 1 points, where N, and N, are the lengths
of y[n] and x[n], respectively. In this example,

N, =6,N, =4 sothat N, N, +1=6-4+1=3

that is, we need three evaluations of h[n]. From Equation 2.9.2, we already got
h[0] = 2. We now apply Equation 2.9.4 twice. For n =1,

1 - 1 1
Al1] = o {y[ﬂ - ; AlkIx{1— k]} - m[y[u — hlol[1]]= 3 [12-2x0] =4

87
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Forn=2,

1 1 1
hl2] = m I:)/[2] - ; hlk]x[2 - k]:| = ml:)/[Z] — hlOIx[2] - th“]:I

:%[25—2><2—4><O]=7

thus, h = {2, 4, 7} as we obtained previously.

Practice Problem 2.9 Given that x[n] = {1, 8, 4, 5} and yIn] = {4, 38, 66, 61, 46,
14, 53, find hn].

Answer: h[n] = {4, 6, 2, 1}.

2.9 COMPUTING WITH MATLAB®

MATLAB provides a simple way of performing convolution. Given two signals
x and h, we can use MATLAB to do the convolution with the built-in function
conv(x,n). The function conv returns a vector of length L, + L, — 1, where L, is the
length of x and L, is the length of /. This produces an output that will be longer than
the input. Often the additional data can be discarded.

It does not matter when x and % are continuous-time or discrete-time signals.
We use conv function for both cases. In fact, the function conv is actually designed
for discrete-time convolution. To use it for continuous-time convolution, we need to
evaluate the convolution integral numerically. Consider the convolution integral

t

y(t) = ~")c(r)h(t —1)dr (2.28)

0

Let 7, the step size or sampling period, be small and let ¢ = kT and t = nT, the convo-
lution integral becomes a convolution summation which can be expressed as

kT k
Y(kT) ~ TZx(nT)h((k—n)T) - TZx[n]h[k—n] (2.29)
n=0 n=0

This approximates a rectangular rule integration. Equation 2.29 can be written as

k
YO RT Y xinilk—n] (2.30)

n=0

which looks like discrete-time convolution except for multiplying by 7.
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For the purpose of illustration, we will solve one example for discrete-time sig-
nals and one example for continuous-time signals.

The MATLAB command deconv(y,) can be used to find the discrete deconvolu-
tion of y[n] and x[n], producing A[n]. While conv can be used to multiply polynomi-
als, deconv can be used to divide polynomials.

Example 2.10

Use MATLAB to find the convolution of the sequences:
xlnl =1{0.2,1.4,2.6,5.1,3.4,8.4)

x:[n]={1.0,4.2,3.7,0.8,3.9}

Solution
The MATLAB to perform the convolution is as follows:

x =[0.2, 14, 2.6, 5.1, 3.4, 8.4]
X, =[10, 4.2, 3.7, 0.8, 3.9]
y = conv(x;, Xp)

The result is

y=0.2000 2.2400 9.2200 21.3600 36.3400 49.0900 62.0800 53.6900 19.9800 32.7600

Thus,

xi[nl* x,[n] = {0.2000 2.2400 9.2200 21.3600 36.3400 49.0900

62.0800 53.6900 19.9800 32.7600}
Practice Problem 2.10  Using MATLAB, find the convolution of these sequences:

xinl =12, 5,4,3,5,1,0} x,[nl ={1,6,3,9, 4,7, 2}

Answer: y[n] = [2 17 40 60 88 110 103 98 58 45 17 2 0]

Example 2.11

A system is represented by its impulse response:

he) = %(e*' —e)

Find and plot the response when the input is x(t) = cos(t) u(?).



90 Signals and Systems: A Primer with MATLAB®

0.1 T T T T T T T T T

0.08

0.06

0.04

0.02

Response y(t)

—-0.02
—-0.04

—-0.06

—-0.08
0

FIGURE 2.23 For Example 2.11.

Solution

To use the function conv for continuous-time convolution, we need to mutilply
conv with a sampling period or step size, as shown in Equation 2.30. The MATLAB
code is as follows, while the plot is shown in Figure 2.23.

T = 0.1; % sampling period

t = 0:T:10;

x = cos(t); % calculates x(t)

h = 0.25*%(exp(-2*t) - exp(-t)); % calculates h(t)
y = T*conv(x,h); %this contains L, + L, - 1

t0 = (0:200)*T

plot (t0,y) % or use this plot(t,y(1:101))
xlabel (*Time (s)’)
ylabel (‘Response y(t)')

Practice Problem 2.11 Repeat Example 2.11 when
BO) =~ (e —e " )ul®,  xo) = e sin(ou(e)
2
Answer: See Figure 2.24.

Example 2.12

Repeat Example 2.9 using MATLAB.

Solution
In MATLAB, we enter the following lines:

x = [3 0 2 6]
y = [6 10 25 20 38 42]
h = deconv(y,x)
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0.08 T T T T T T T T T
0.07
0.06
0.05
0.04
0.03

Response y(f)

0.02

0.01

_0‘01 1 1 1 1 1 1 1 1 1
0 2 4 6 8§ 10 12 14 16 18 20

FIGURE 2.24 For Practice Problem 2.11.

This produces
h =124 7]
Practice Problem 2.12 Repeat Practice Problem 2.9 using MATLAB.

Answer: h=[462 1]

2.10 APPLICATIONS

There are several applications of the convolution technique developed in this chapter.
Convolution is used in circuit analysis, statistics, probability theory, optics, acous-
tics, digital image processing, and computational fluid dynamics. We will employ
convolution to determine the stability of systems. We will also consider an applica-
tion in circuit analysis.

2.10.1 BIBO StaBiLiTY oF CONTINUOUS-TIME SYSTEMS

A system is bounded-input bounded-output (BIBO) stable if every bounded-input
signal produces a bounded-output. We can determine the condition for stability by
applying the convolution integral. Suppose we are given an LTI system and we apply
a bounded-input x(7). The boundedness of x(f) can be expressed as |x(f)| < K, where
K is a constant. The output y(#) can be bounded as follows. By definition,

y(t)=x()*h(t) = J. x(t —1)h(t)dt
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Therefore,

y(0)| = Jl x(1 —0)h(t)dr| < J' | x(t =) || A(1) | dr < Jl K | h(t) | dx

—0

= KJ' Ih(v)|dr (2.31)

This shows thatly()lis ﬁniteifj K | h(7) | drisfinite. Thisreduces to I | h(t) | dt < o0

since K is finite. For an LTI system, the condition for stability reduces to

j | h(t)| dt < oo 2.32)

A continuous-time system is BIBO stable if its impulse response /4(t) is abso-
lutely integrable.

Example 2.13
An LTI system has the impulse function h(t) = e=?tu(t). Determine whether the
system is stable or not.

Solution
Using Equation 2.32,

j I h(t)l dt = J.e’zrdt =

—0 0

6721

-2

© 1
=—<®

0 2

Since h(p) is integrable, we conclude that the system is stable.

Practice Problem 2.13 Repeat Example 2.13 with h(t) = u(t). This is the impulse
response for a continuous-time integrator.

Answer: Unstable.

2.10.2 BIBO StaBILITY OF DISCRETE-TIME SYSTEMS

The same analysis applies to discrete-time systems. Suppose we have an LTI system
and we apply a bounded input x(¢), with Ix[n]l < K, where K is a constant. We can
bound the output as follows. We recall that

0

yn]=x[n]*h[n] = Z x[n—k]hlk]

k=—0
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Therefore,

0

bl =D " xtn—kIhk) < | dn =K1 [[ ALK < " K | hik]]
k=—o0 k=—0 k=—00
=K |nk| (2.33)
k=—0

This shows that Iy[n]l is finite if Zl h[k]| is finite. Thus, for stability (ly[n]l<oco)

k=—0

Z| hik]| < oo (2.34)
k=—0

A discrete-time system is BIBO stable if its impulse response h[n] is absolutely
summable.

Example 2.14

A discrete-time system has an impulse response hln] :lu[n]. Determine if the
n

system is stable.

Solution
From Equation 2.34

© N
;|h[k]|:z%=y& %

o0
k=0 k=0

which does not converge as N—oo. Thus, h[n] is not absolutely summable and we
conclude that the system is unstable.

Practice Problem 2.14 A filter is described by h[n] = (=0.6)". Is the system stable?

Answer: Stable.

2.10.3 CircuitT ANALYSIS

We now apply convolution to analyze electric circuits. The following example will
illustrate the procedure.
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1H
v (0)

v,
1 S Yo

FIGURE 2.25 For Example 2.15.

Example 2.15

The pulse v(t) in Figure 2.25a is applied the RL circuit in Figure 2.25b. Use the
convolution integral to find the response v,(t).
Solution

This problem requires that we know the impulse response of the circuit. Throughout
this chapter, we assume that the impulse response h(t) is given. We will learn how
to find it in the next chapter. For now, let us assume that the impulse response of
the circuit is

From Figure 2.25a, v,(t) = u(t) — u(t — 4). Once we know impulse response h(t) and
input signal v,(t), we can find the response v, (¢):

Volt) = hi) * v, (0) = jvs(r)h(t _d
0

- j [u()—ult—4]] eV (215.)

0

Since u(t — 4) = 0 for 0 < T < 4, the integrand involving u(t) is nonzero for all =,
whereas the integrant involving u(t — 4) is nonzero only for t > 4. The best way to
handle the integral is to evaluate the two parts separately. For 0 < t < 4,

=e(e'-N=1-e", O0<t<4 (2.15.2)
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10

FIGURE 2.26 For Practice Problem 2.15.

Fort > 4,

t t
Vo = J.(1)e’“’”dr = e"J.(Uert

4 4

:e”(et—e4)=1_e4eit1 t>4 (2.15.3)

Substituting Equations 2.15.2 and 2.15.3 into Equation 2.15.1 gives

Volt) = v (t) —val(t)
=(1—e)[ult—4) -u]-(1-e*e™ult - 4)

) 1-e7, O<t<4
ete -1, t>4 (2.15.4)

Practice Problem 2.15 Find the response v,(t) of the RC circuit of Figure 2.26.
Assume that the impulse response of the circuit is h(t) = e"u(0).

Answer: 5 (et — e2)u(t) V

2.1

L.

2.
3.

SUMMARY

This chapter discusses time-domain analyses of linear, time-invariant (LTI)
continuous-time and discrete-time systems.

Every LTI system is characterized by its impulse response A(f) or h[n].

The analysis of an LTI system can be reduced to finding the response of the
system to input signals. Given the impulse response A(f), the system’s response
¥(f) to an input signal x(f) is given by the convolution integral:

y(t)=x()*h(t) = I x(Dh(t—1)dt

Thus, convolution is a time-domain technique for determining the response of
a system to an input.

. Convolution is obtained analytically or graphically by performing four

operations: (1) folding or time reversal to get 4(—7), (2) shifting to get h(f — 1),
(3) multiplying A(f — ) and x(t), and (4) integrating A(t — T)x(7).



96

10.

11.

12.

13.
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. The composite impulse response Ah(f) of two systems (with impulses

h,(f) and h,(?) in series is the convolution of the individual impulses, that is,
h(®) = h\@)*h,(0).

. The composite impulse response /(7) of two systems (with impulses £,(f) and /,(t))

in parallel is the sum of the individual impulses, that is, A(f) = h,(f) + h,().

. Block diagram representation helps us understand the dynamic behavior of

systems.

. For discrete-time system, the impulse response A[n], the input x[n], and the

output y[n] are related by the convolution sum:

0

yln]= x[n]* h[n] = Z x[kJh[n—k]

k=—o0

. Convolution (both in continuous-time and discrete-time) is commutative, asso-

ciative, and distributive.

Deconvolution is the process of finding the impulse response A[n] of a system
given its input x[n] and its output y[n].

The function conv(x,h) is used in MATLAB to perform both continuous-time
and discrete-time convolution. The MATLAB function deconv(y,x) performs
discrete deconvolution.

A continuous-time system is BIBO stable if its impulse response is absolutely
integrable. A discrete-time system is BIBO stable if its impulse response is
absolutely summable.

A simple application of convolution is circuit analysis. If we know the impulse
response of a circuit, we can determine the response to any input with the use
of convolution.

REVIEW QUESTIONS

21

2.2

It is improper to talk about an impulse response for a non-LTT system.
(a) True, (b) false

Which of these is not true?

@ x(@*h(1) = h(=1)*x(1)

(b) x(0)*8(1) = x(1)

© x@)*8'(1) = x'()

) u@®*d'(® = 8()

2.3 The methods introduced in this chapter are known as time-domain method

24

2.5

2.6

because they involve functions of time.

(a) True, (b) false

When two systems with impulse responses /,(f) and h,(f) are connected in
series, the impulse response of the composite system is

@) @ + hy(1), (b) hy(t)*hy(0), (c) hy(t)/h,(?), (d) none of the above

Consider the two signals in Figure 2.27. They are convolved to get y(f). The
duration of y(7) is

@ -1<r<2,(b)2<t<2,(c)-1<t<3,(d) none of the above

From the previous question, the area of y(?) is

(@ 2, (b) 4, (c) 6, (d) none of the above
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%, () %, (2)

-1 0 1 t 0 2

FIGURE 2.27 For Review Questions 2.5 and 2.6.

hyln) hyln) h3[n]
x[n)

FIGURE 2.28 For Review Question 2.9.

2.7

2.8

29

Which of the following is not true?
(@) d[n] = ulnl—uln—1]

(b) un]= Z S[k]
k=—o0

(© x[n]* d[n] = x[n]

(d) x[n]* hln] = —h[n]* x[n]

If two sequences of length 8 and 10 are convolved to give y[n], the length of y[n] is
(@) 8, (b) 10, (c) 17, (d) 18, (e) none of the above

Consider the interconnection of three LTI system in Figure 2.28. The overall
impulse response is

@ hy[n] + hy[n] + hy(n]

(b) Iyl [l hsfn]

(c) None of the above

2.10 The MATLAB function conv is used for

(a) Continuous-time convolution
(b) Discrete-time convolution
(c) Both (a) and (b)

Answers: 2.1(a), 2.2(a), 2.3(a), 2.4(b), 2.5(c), 2.6(a), 2.7(d), 2.8(c), 2.9(b), 2.10(c)

PROBLEMS

SecTION 2.3—CONVOLUTION INTEGRAL

2.1 Show that x,()* x,() = x,(O)* x,(9).
2.2 Show that

@ fO*8() =)
(b) fy*d(r —1,) = fle - 1,)

© fO*ult)= jf(r)dr
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2.3

2.4

2.5

2.6

2.7

2.8

29

2.10

211

2.12

213

2.14
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d d
Show x(t)* —&(t) = — x(¢).
(0 7 (1) 7 (1)
Given the following signals

x(1)=28(r), y(t)=4u(t), z(t)=e>u(r),

Evaluate the following operations.

@ x(@®*y()

(b) x(®)*z(0)

© y®*z@)

@) yO*[y@® + 2]

Use the convolution integral to find

(@) r*e™ u(r)

(b) cos(t)*cos()u(r)

Write the expression for y(f) = x(f)*6(¢ — 2) when
(@) x() =1>

(b) x(#) = 1 + 0.5)*

(c) x(t) = 4e7* cos2nt — w/2)

Sketch these functions

(@ x(@ =TIE/2)* [8(t + 1) + Ot + 2)]

() y@) = [AC + D=A@—1)]+5()

© z(0 =T@2)* A@®

Show that

@ u@®* u@®) =r@)

(b) u(t—1* u(=3) = r(t—4)

© Il@o* 1@ty = TA@)

For an LTI system, the impulse response is h(f) = e >u(f). If the input to the
system is x(f) = 10e > u(f), find the output y(7).
The input to an LTI system is x(f) = cos(2f), while the impulse response of the
system is

h(t)=e = ¢, 1<0
e’ 120

Determine the system’s output y(f).

The impulse response of a filter is A(?) = e”>u(f) — 5(¢). Find the response of the
filter to the input e~"u(f).

An LTI system has its impulse response h(f) = u(f). Find the response corre-
sponding to the input x(r) = e~>u(t).

Given that the impulse response of a system is A(f) = e >u(t), determine the
system’s response y(?) if the input is

@ u@)

(b) e~'u(t)

(c) cosHu(®)

The impulse response of a low-pass filter is h(f) = e~'u(f). Determine its step
response, that is, the output when the input is a unit step.
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2.15 If h(r) is the impulse response of a system and x(?) is the input, what kinds of
systems are described by: (a) h(f) = 8(7), (b) h(?) = (d/dn)d(F), () h(t) = u(?).
2.16 Given that h(f) = 4e~>'u(r) and x(t) = 8(r) — 2e~>u(?), find y(¥) = x(O)*h(r).

SecTION 2.4—GRAPHICAL CONVOLUTION

2.17 Verify the area property of convolution in Example 2.3; that is, if A,; and A,
are the areas under x,(?) and x,(f) respectively, the area A under y(z) = x,(£)*x,(f)
isA =A,A,.

2.18 Perform a graphical convolution of the two signals in Figure 2.29.

2.19 Find the convolution of x(f) and A(f) in Figure 2.30.

2.20 Determine the convolution x,(f)*x,(f) for each pair of signals in Figure 2.31.

2.21 Suppose x(f) = u(f) — u(t — 2), determine y(t) = x()*x(f).

2.22 Obtain the convolution of the two signals in Figure 2.32.

SecTION 2.5—BLock DIAGRAM REPRESENTATION

2.23 Two systems are connected in parallel as in Figure 2.33. If the impulse
responses of the systems are given by

ha(t)=4e”u(t) and (1) =e*u(t)

Find the impulse response of the overall system.
2.24 Determine the overall impulse response for the system shown in Figure 2.34.

x,(8) xy(t)

v
v

FIGURE 2.29 For Problem 2.18.

>

27t u(t)

v
v

FIGURE 2.30 For Problem 2.19.
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x5(t)
xl(t) A
1 1
T >
o1 2 3 t 0 1 t
(a)
x,(8) %5(2)
1
4 4e72 y(t)
1 t
-1
v 0 t

FIGURE 2.31 For Problem 2.20.

x(t)

~V

FIGURE 2.32 For Problem 2.22.

x(t) ¥(®)

FIGURE 2.33 For Problem 2.23.
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hy(t)

x(t) hy(2) h3(t) —» hs(6)——> ¥(®)

Iy (2)

FIGURE 2.34 For Problem 2.24.

SecTION 2.6—DiscreTe-TiME CONVOLUTION

2.25 The following equalities are useful in our studies. Prove each of them.
N-1 N, a=

© Zkak:(l_aa)z’ la|<1

k=0

2.26 Consider a discrete-time system with impulse response
hn]l=(0.4)"uln]
If y[n] is the output of the system due to the input

x[n]=08[n—1]+39[n]
find y[2] and y[5].
2.27 Determine y[n] = x[n]*h[n] for the following pairs of signals:

@ x{nl=uln],  hln]=4"ul[n]
(b) x[n] = h[n] = 2"u[n]
(©) x[n]1=(0.3)"uln], h[n]=2"u[n]

2.28 Find the convolution of the signals x,[n] and x,[n] given as
xln]=23)"uln],  x:[n]=3(2)"uln]

2.29 Obtain the convolution of x[n] and h[n] shown in Figure 2.35.
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FIGURE 2.35 For Problem 2.29.

x[n] hn)

A

N p— W
v

2
Al [
01 2 3 =n 01

FIGURE 2.36 For Problem 2.31.

1, n=0
1, n=0
. 3, n=1
2.30 Given that x[n]=<-1, n=1 ,  h[n]= ) 3
] n=
0, otherwise .
0, otherwise

(a) Sketch x[n] and A[n].
(b) Find x[n]*h[n].
2.31 Find the discrete convolution of x[n] and A[n] shown in Figure 2.36.
2.32 Given that x[n] = u[n] and A[n] = (0.4)" + (0.5)**!, n > 0. Find y[n] = x[n]*h[n].

n n+l
Hint: Zak _1=a™
e l1-a

SecTION 2.7—BLock DIAGRAM REALIZATION

2.33 Two systems are described by

hn]=0.4"uln], h[n]=08nrn]+0.58[n—1]

Determine the response to the input x[n] = (0.4)"u[n] if
(@) The two systems are connected in parallel
(b) The two systems are connected in cascade

2.34 For the interconnection of LTI systems in Figure 2.37, find the overall impulse
response.
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yln]

hyln]

FIGURE 2.37 For Problem 2.34.

SECTION 2.8—DECONVOLUTION

2.35 Find the impulse response of a system which yields y[n] = [2 3 =2 4] when
excited by the input x[n] = [1 0 2].

2.36 The input x[n] = [1 —1] to a system produces the output y[n] = [4 2 5 1].
Determine the impulse response.

SectioN 2.9—CoMPUTING WiITH MATLAB®

2.37 (a) Using MATLAB, write a program to convolve x(f) = e~'u(f) and h(t) = u(t) —
u(t - 2).
(b) Do the convolution analytically and compare this with MATLAB result in
part (a).
2.38 A filter has the impulse response as

h[n] = {1’131’15 17_13_1,_17_19_1}

Use MATLAB to determine the output due to x[n] = cos(nn/2).
2.39 An LTI discrete system has the impulse response h[n] = (0.6)" u[n]. Use
MATLAB to calculate the response of the system to input x[r] = u[n] and plot it.
2.40 Repeat the previous problem for x[n] = cos(nn/6)u[n].
2.41 Giventhatx[n]=[1-124]andy[n]=[264085 12], use MATLAB to find A[n].

SECTION 2.10—APPLICATIONS

2.42 Determine the stability of the LTI system with the following impulse responses.
(@ h(@) =e*u(®
(b) k() = sin2t u(f)
(c) h(®) = e7'cos2t ul(f)
2.43 A system has an impulse response A(f) = u(t + 1) — u(t — 1). Is the system stable?
2.44 State which of the systems represented by the following impulse responses are
stable or unstable.
@) hln] = 8[n]
(b) h[n] = (=0.5)"uln]
(©) h[n] = uln]—u[n—10]
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2Q

FIGURE 2.38 For Problem 2.48.

2.45 An accumulator has impulse response A[n] = u[n]. Check if an accumulator is
BIBO stable.

2.46 The input to the circuit discussed in Example 2.15 is v,(f) = u(t — 1) + 8(t — 2).
Use convolution to determine the output.

2.47 Determine the output of the circuit discussed in Practice Problem 2.15 if
V(0 = u().

2.48 If the filter in Figure 2.38 has the impulse response A(f) = 8(f)—2e~>u(t), find
the step response.



3 The Laplace Transform

The brave man is the man who faces or fears the right thing for the right purpose in the
right manner at the right moment.

—Aristotle

HISTORICAL PROFILE

Pierre Simon Laplace

Pierre Simon Laplace (1749-1827) was a French astronomer and mathematician,
whose work was important to the development of mathematical astronomy and sta-
tistics. He also put the theory of mathematical probability on a sound footing. He
first discovered Laplace’s equation and Laplace transform, which is discussed in this
chapter. To Laplace, the universe is nothing but a giant problem in calculus.

Laplace was born in Beaumont-en-Auge, Normandy, France on March 23, 1749, and
died in Paris on March 5, 1827. Laplace became a professor of mathematics at the age
of 20. He is remembered as one of the greatest scientists of all time. He is sometimes
referred to as the “Newton of France.” He was widely known for his five-volume work,
Celestial Mechanics, which supplemented the work of Newton on astronomy. After
the publication of this work, Laplace continued to apply his ideas of physics to other
problems such as capillary action, double refraction, the velocity of sound, the theory of
heat, rotation of the cooling earth, and elastic fluids. He was born and died a Catholic.
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3.1 INTRODUCTION

We saw in Chapter 2 that system analysis in the time-domain involves the evalu-
ation of the convolution integral or sum since the response of the system is given
by the convolution of the input and the impulse response. This chapter introduces
the Laplace transform, a very powerful, alternative tool for analyzing systems. The
Laplace transform is named after Pierre Simon Laplace (1749-1827), the French
astronomer and mathematician. In contrast to the time-domain models studied in the
previous chapter, the Laplace transform is a frequency-domain representation that
makes analysis and design of linear systems simpler.

The Laplace transform is a well-established tool in analyzing continuous-time,
linear systems. It is important for a number of reasons. First, it is applicable to a
wider variety of inputs. The Laplace transform of an unbounded signal can be found.
Second, Laplace transform is powerful for providing us in one single operation the
complete response, that is, the steady-state plus transient or homogeneous, and par-
ticular. Third, it automatically includes the initial conditions in the system analysis.
It allows us to convert ordinary differential equations into algebraic equations, which
are easier to manipulate and solve. It converts convolution into a simple multiplica-
tion. Fourth, we can apply Laplace transform to generate the transfer function repre-
sentation of a continuous-time LTT system.

The chapter begins with the definition of the Laplace transform and uses that defi-
nition to derive the transform of some basic, important functions. We will consider
some properties of Laplace transform which are helpful in obtaining the Laplace
transform of other functions. We then consider the inverse Laplace transform. We
apply all these to solving integro-differential equations and system analysis, espe-
cially in circuit and control systems. We finally demonstrate how MATLAB® can be
used to do most of what we cover in this chapter.

3.2 DEFINITION OF THE LAPLACE TRANSFORM

There are two types of Laplace transforms:
1. The two-sided (or bilateral) Laplace transform:
The two-sided Laplace transform allows time functions to be nonzero for
negative time.

©

Llx()]=X(s)= I x(t)e™dt 3.1

—0

where s is the complex frequency given by
S=0+jo (3.2)
where ¢ (in Np/s) and o (in rad/s) are the real and imaginary parts of s,

respectively. The advantage of the bilateral Laplace transform is that it can
handle both causal and noncausal signals over —co to co.
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2. The one-sided (or unilateral) form:
A one-sided Laplace transform is zero for negative time, that is, # < 0. It is
found from Equation 3.1 by setting the lower limit of the integral equal to zero.

Lx(O]= X(s)= Ix(t)e"“’dt (3.3)
b

where 0~ denotes a time just before 0.

The one-sided Laplace transform is a more commonly used transform
than the two-sided Laplace transform, because we encounter only positive-
time signals in practice and it is defined for positive-time signals.

According to Equation 3.3, the ~-domain signal x(#) is changed into the
s-domain function X(s).

The Laplace transform of a signal x(7) is the integration of the product of x()
and e~ over the interval from O to +co.

In inverse Laplace transform the s-domain X(s) is changed back to t-domain x(f)
and is given as

O]+ joo

1 _ _L st
LX) =20 = j X(s)e"ds »

G| — joo

where the integration is performed along a straight line (6, + jo, —c0 < ® < ) as
shown in Figure 3.1. The Laplace transform pair x(f) and X(s) are represented as

x(1) < X(s) (3.5)

because there is one-to-one correspondence between x(¢) and X(s).

jw

QV

o

FIGURE 3.1 Region of convergence for the Laplace transform.
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A signal x(7) is Laplace transformable if the integral in Equation 3.3 exists; that is,
in order for x(7) to have a Laplace transform, the integral in Equation 3.3 must con-
verge. The integral converges when

0

J.x(t)e’(‘”j‘”)’dt <o

(3.6)
hel
This can be simplified as
j' x(r)e O dr| < J' (e
0" 0"
< J ‘x(t)He'(“”“’)’dt‘ <o (3.7)
e
Since le/*| = 1 for any value of ¢,
—ot
I [x(n)]edr <0 38
e

for some real value of 6 = .. The inequality in Equation 3.8 states that the Laplace
transform exists. Hence, the region of convergence (ROC) for Laplace transform
is Re(s) = 6 > o, as shown in Figure 3.1, the ROC means, the range of s for which
the Laplace transform converges. We cannot define X(s) outside the region of con-
vergence. The portion of the s plane in which the integral converges is found by the
value of 6. All signals that we come across within the system analysis fulfill the con-
vergence criterion in Equation 3.8 and have their corresponding Laplace transforms.

Example 3.1
Find the Laplace transform of the following functions and establish the ROC for
each case.

(@) et

(b) 8(0)

Solution
(@) For the exponential function, shown in Figure 3.2a, the Laplace transform is

B[e—Stu(t)] — J.e—Ste—stdt - _ 1 ef(s+5)t O(i — 1 (3.1.1)
s+5 0" s+5
o
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eyt
T 3(2)
1
ol & 0 :

(@) (b)

FIGURE 3.2 For Example 3.1: (a) Exponential function, (b) unit impulse function.

Notice that lime ™ = 0 only if Re(s + 5) > 0 or Re(s) > —5. Alternatively,

t—o

the ROC is obtained from

‘e—(s+5)t‘ — ‘e—(cHS)t‘ ‘e—/cul

_ ‘ e—(o‘+5)t‘

< oo

which is valid when ¢ + 5> 0 or 6 > —5. The result in Equation 3.1.1 is so
important that it deserves boxing. In general,

(3.1.2)

S+a

A special case of this is when a = 0. e~?u(t) becomes u(t) and we have
Llu®)] = 1 (3.1.3)
s
(b) For the unit impulse function, shown in Figure 3.2b,

£[5(0] = j Ste'dt =e® =1 foralls (3.1.4)
J

The sifting property in Equation 1.28 has been applied in Equation 3.1.4.
In this case, the transform does not depend on s and hence the region of
convergence is the entire s plane.

Practice Problem 3.1 Determine the Laplace transform of these functions and
specify the region of convergence for each:

(b) e tu(t)

Answers: (a) 1/s3, Re(s) > 0, (b) 1/(s + jw), Re(s) > 0.



110 Signals and Systems: A Primer with MATLAB®

Example 3.2

Find the Laplace transform of x(t) = sin ot u(?).

Solution
The Laplace transform of the cosine function is

% jot -~ jot
(sinot)e™'dt = .[(e.eJe“dt

X(s) = Llsinwt] = 5
J

o‘—.S

0

ij —(s—jo)t —(s+ jo)t )dt
2 0

®

1
2/ s—jo s+/mj s+ o’

Practice Problem 3.2 Find the Laplace transform of x(t) =10 cos wt.

10s

2+’

Answer:

3.3 PROPERTIES OF THE LAPLACE TRANSFORM

The properties of the Laplace transform are summarized below, which are useful to
obtain the transform of many signals. Some of the properties are linearity, scaling, time
shifting, frequency shifting, time differentiation, time convolution, time integration,
frequency differentiation, time periodicity, modulation, and initial and final values.

3.3.1 LINEARITY

Let the Laplace transform of two signals x,(f) and x,(f) be X,(s) and X,(s), respectively.
Then the linearity property states that the Laplace transform of the sum of two func-
tions of time is equal to the sum of the transforms of each function and is given as

L] @xi(0) + @y () ] = @ Xi(5) + @ X (s) (3.9)

where a, and a, are constants.
The linearity property is explained as follows:

©

Llayxi (1) + ayx, ()] = I[auxl (1) + arx,(t)]e”“dt

0
=q I x(He "dt + a, I X, (e "dt
0 0

= ale(s)+a2X2(s) (310)
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For example, consider
x(t) =3e* +5¢7. (3.11)

By using linearity property, X(s) = L[3e* + 5¢7%] = L[3e*] + L[Se™%]

3 5
J’_

s—4 s+6

X(s) = (3.12)

3.3.2 SCALING

Let X(s) be the Laplace transform of the signal x(f). Let a be any positive real con-
stant, then Laplace transform of x(af) is given as

0

L[x(at)] = Ix(at)e’”dt

(3.13)
0
Let A = at, d\ = a dt, we obtain
© NE © s
Llx(at)] = J‘x(k)e"ke [“J i = lJ‘x(K)e (”jdk (3.14)
0 a a 0
Thus, the scaling property is obtained as
1 s
Lx(at)] = X(j a>0 (3.15)
a \a

The unilateral Laplace transform is valid only for causal signals and not valid for
noncausal signal (when a is negative i.e., a < 0).
For example, consider

Llr(] =L (3.16)

2
N

By applying the scaling property,

11 2
2627 & @17

L{r2n]=
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3.3.3 TiIME SHIFTING

Often we can see that there is a signal delay in control systems due to transmission
delays or other effects. Let X(s) be the Laplace transform of signal x(f). Then time
shifting is given as

|L[x(z —au(t—a)]= e*‘“X(s)| (3.18)

If a function is delayed in time by a, then the Laplace transform of the function is
multiplied by e=*. The time shifting property can be proved as follows:

Lx(t—a)u(t—a)] = Ix(t —a)u(t—a)edt, a=0 (3.19)
0

Ifu(t—a)=0fort<aand u(t—a)=1fort>a
then,

Lx(t—a)u(t—a)] = J'Oe_”dt + jx(t —a)De™'dt (3.20)
0

a

by substituting A =t — a, dA = dt, and t = A + a. As t—a, A—0, and as t—o0, A>0
thus,

©

Llx(t—a)u(t—a)] = J.x(}\')efx(ma)dx

0

=e® J x(V)e™ d\
0

=e “X(s) (3.21
For example, consider

g(t) = u(t —4) —u(t —6). (3.22)

We know that L[u(t)] = 1
s

Using linearity property and the time shifting property,

G(s) = Llu(t—4)—u(t —6)] = Lot Lo _ 1(5‘” - e*“) (3.23)
) S S
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3.3.4 FREQUENCY SHIFTING
Let X(s) be the Laplace transform of the signal x(r). Then the frequency shifting is
given as
Lle " x(oun)]= I e x(t)e " dt = J.x(t)e’(”“)’dt =X(s+a)
0

0

(3.24)

L [e-“'x(z)u(tﬂ = X(s+a)

The Laplace transform turns multiplication by e~ in the time-domain into s + a in
the transform X(s).
For example, consider

cosotu(t) < (3.25)

52+ o

By applying the frequency property and replacing every s by s + a, the Laplace trans-
form of the cosine function is given by

s+a

B[eiat COos OJtl/l(t)] = m

(3.26)
3.3.5 TiME DIFFERENTIATION

Time differentiation property is important for solving differential equations. Let X(s)
be the Laplace transform of the signal x(f). The Laplace transform of the derivative
of x(¢) is given as

dx dx
L] —u(t)|= j— C0dt 3.27
[ it u( )} it e (3.27)
b
. .. dx
By differentiation by parts, U = e, dU = —se~*'dt, and dV = m dt =dx, V = x(t),

then

©

wa - I x(1) [—se“s’ J dt

0

L[dxu(t)} =x(t)e™

=0-x(0")+ SJ. x(t)e ' dt
b

=sX(s)—x(07)

(3.28)

L[ x'(0)] = sX ()~ x(07)|
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By differentiating the above equation, we get

2
c Bg} = sL[X()]-x'(07) = s| sX(5) = x(07) | = x'(0")

=5?X(s)—sx(07)—x'(07) (3.29)

|£[x"(r)] = 52X (5)—sx(07) = x'(0 )|

In the same way, for the nth derivative, we get

c { szﬂ = 5"X(5)—s""x(07) = " 207y == %" D(0) (3.30)

For example, consider x(f) = cos wt u(f). Then at = 0, we have x(0) = 1. By applying
time differentiation, the Laplace transform of the derivative of x(7) is

d s _ _
L Lﬁ cos cotu(t)} = s(sz pe J —cos(07)u(07)
_ 3.31)
s+’

3.3.6 Time CONVOLUTION

Let X(s) and H(s) be the Laplace transform of the signal x(f) and (7). Then the con-
volution property is given as

[LLx(t)* h(t)] = X(9)H (5)| (3.32)

In time-domain the convolution property,

x()*h(t) = Ix(t —r)h(r)dr
0

Considering the Laplace transform on both sides

©

L x(r)*h(t)] :I [fh(r)x(t—t)dr] et

0

L[ x(t)*h(1) ] = J-h(r){ J' x(t - r)e“dt]dr (3.33)
0

0
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LetA=tr—Asothatr=7 + A and df =dh

L[x0)*h)]= J h(t)[jx(k)e_s(’”)dk]dr
0

0

= J‘h(t)e"”dtj‘x(k)e"“dk =H(s)X(s)
0 0

For example, consider
g =u(t-3)—u(t—4).

By applying the Laplace transform on both sides
G(s) = 1(6’“ - e"”)
s

Considering the convolution of g(f)*g(z), which is G*(s),

_ L

2

(ef()s _2677,\‘ + e*&\')
N

G2(s) _ siz(efzx _e )2

By applying inverse Laplace transform, we get

x(t)=g(t)*g(t) = —6)u(t—6)=2(t = Nu(t = 7) + (t = 8)u(t -8)

=r(t—6)=2r(t=T)+r(t—-8)

3.3.7 TiME INTEGRATION

115

(3.34)

(3.35)

(3.36)

Let X(s) be the Laplace transform of the signal x(7). Then Laplace transform of the

integral is given as

0

E[jx(t)dt] = %X(s)

From the convolution property, we get

0 0

L D. x(t)dt | = 1 X(s)
s

0

c [I (VM | = { [ xuc- x)dx] = £[u(t)* x(0)] = L X(s5)
N

(3.37)
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For example, let x(f) = u(f). We know that X(s) = 1/s. By applying the time integration
property,

’ 111

0

3.3.8 FREQUENCY DIFFERENTIATION

Let X(s) be the Laplace transform of the signal x(r). Then Laplace transform of the
frequency differentiation is given as

dX(s)

L]x(t)]=- "

X(s) is given as
X(s) = Ix(t)e""dt
0

Differentiating both sides, we get

©

S = [ =] (o) ar =[]
0

ds

o

The frequency differentiation property is given as

dX(s)

L] tx(t) |=——= 3.38
[2x(1) ] . (3.38)

Similarly, the general form of frequency differentiation property is given as

d"X (s)
Ll t"x(t) |=(=D" 3.39
[ == (339)
For example,
d s 57—’

L(tcoswt)=—— = 3.40
( ) dsL2+m2} (s> + o)’ (3.40)

. d ® 2ms
£(ts1ncot)=—dsL2+w2i|= F 1) (3.41)
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3.3.9 Time PeriobiciTY

Consider a periodic signal x(7) and it can be expressed as a sum of time-shifted func-
tions as (Figures 3.3 and 3.4)

x(1) = x, () + x,(1) + x3 (1) + -+

= x,(t)+ x,(t = T)u(t = T) + x,(t = 2T )u(t = 2T) + - (3.42)

where 0 <t < T. By applying the Laplace transform and the time-shifting property,
we get

X)) =X+ X,(9)e™™ + X, ()" + X, (s)e™ " +---

- Xl(s)[l e p e LTy ] (3.43)
x(t)
o' T 2T 3T T

FIGURE 3.3 A periodic function.

X1 (®)

VAN

of T ¢
%, (2)
T 2T t
x3 (2)
0 T 2T 3T t

FIGURE 3.4 Decomposition of the periodic function in Figure 3.3.



118 Signals and Systems: A Primer with MATLAB®

But
2, 3 1
l+a+a +a +---= (3.44)
l1-a
iflal < 1.
X(s)=-2) (3.45)
l-¢
For example, consider
sinmt, O<t<l
x(2) =
0, 1<t<?2
0 1
X, (s) = le(t)e_”dt: Jsin nte " dt (3.46)
0 0
at
e sinbt dt = asinbt —bcosbt
J a’+b* ( )
where
a=-—s
b=m=n
—st 1 (1 + 75)
X, (s) =%[—ssinnt—ncosm‘] =%, T=2 (3.47)
STHT , Stm
X (s
X(s)=~ )
n(l+e™) (3.48)

3.3.10 MODULATION

Let X(s) be the Laplace transform of the signal x(¢), then for any real number o,

ﬁ[x(t)cos cot] = %[X(S+jw)+ X(s —j@)J
(3.49)

L[ x(t)sinor | = %[X(s +jo) = X(s - jo)]
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The signals x(f) cos ot and x(f) sin of can be expressed as

—_ 1 — joot Jjot
x(t)cosmt = Ex(t) [e +e ]

(3.50)
- _ 1 —jot Jjot
x(t)sinwt = ?jx(t)[e —e J
From Equation 3.24,
Lle7x(1)]= X (s % joo) (3.51)
For example, we know that
1
ut) & — (3.52)
s
(1) cos(w,1) < 1{ L, 1 }: s
2| s+ jo, s—jo, s°+ o,
(3.53)
u()sin(e,) < 1.[ L1 } 2
2j| s+jo, s-—jo, 57+,

3.3.11 INImAL AND FINAL VALUES

The initial value x(0) and final value x(co) are used to relate frequency domain
expressions to the time-domain as time approaches zero and infinity, respectively.
These properties can be derived by using the differentiation property as

_ dx wdx —
SX(S)—X(O):El:dl:|:Idt€ dt (354)
0

By taking limits, we get

lim[ sX(s)—x(0) | =0

Since x(0) is not dependent on s,

x(0) = 11_1)11 sX(s) (3.55)
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This is called the initial-value theorem. x(0) can be found using X(s), without using
the inverse transform of x().
If we consider s—0, then

sX(s)—x(O’) = ]i(:;eo'dl = de = x(00)—x(07)
0 0

x(00) = ling sX(s) (3.56)

This is known as the final-value theorem. In the final-value theorem, all poles of X(s)
must be located in the left half of the s-plane.

For example, consider

4 s+2
x(t)=4+e cos3t ut) & X(s)=—+———>— 3.57
(?) () (s) s or e (3.57)
By applying the initial-value theorem,
st +2s

x(0) =limsX(s)=lim4+——""—
O = X0 = o

1 +2
= lim 44— S =4 1+0 (3.58)
5 14242 1+0+0
s S
x(0)=5
As another example, consider
-2t 5 1
x(H) =0+ NHult) = X(s)==+—— (3.59)
s s+2
Using the final-value theorem,
x(OO)zlimsX(s):lim(5+ 5 ):5+O=5 (3.60)
50 50 s+2

The final-value theorem cannot be used to find the value of x(r) = cos 21, because X(s)
has poles at s =+ j\/z , which are not in the left half of the s plane.

For convenience, Table 3.1 provides the derived list of properties of Laplace
transform, while Table 3.2 gives the Laplace transform of some common functions.
For signals in Table 3.2, we have omitted the factor u(f) except where it is necessary
because we are only interested in functions that exist for # > 0.
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TABLE 3.1

Properties of the Laplace Transform

Property

Linearity
Scaling

Time shifting
Frequency shifting

Time differentiation

Second derivative

Third derivative

nth derivative

Time convolution

Frequency convolution

Time integration

Frequency integration

Frequency

Differentiation

Multiplication by

Time periodicity

Modulation

Multiplication by cos wt

Multiplication by sin w?

Initial value

Final value

x(t)

ax (1) + a,xy(1)
x(at)
x(t—a) u(t—a)
e~ x(t)

dx

dt

o

dr*

o

dr’

d"x

dr"
x(1)*h(t)

Xy (D)x5(1)

t

I xX(t)dt

0

0
t

tx(1)
" t"x(t)

x(t) = x(t + nT)

x(t) cosot

x(t) sinwt
x(0)

x(c0)

X(s)
a,X,(s) + a,X,(s)

lX[ij, a>0
a \a

e~ X(s)
X(s+a)

sX(s) —x(07)
$2X(s)—sx(07)—x’"(07)
$3X(5)—52x(07)—sx’(07)—x"(0")

§"X(s)—s""1x(07)—s""2x"(07)—...—x"=D(0")
X()H(s)

L‘Xl(s)* X,(s)
2

Tx)
)

j‘OX (A)d\

_d

X
s (s)

4"
dx"

=D X(s)

Xi(s)

1—e"

1 . .
E[X(S + jo)+ X(s —]m)]
J . .
E[X(s + jo) = X(s - jo) |
lim sX(s)

lin(} sX(s)




122 Signals and Systems: A Primer with MATLAB®

TABLE 3.2
Laplace Transform Pairs?
Entry No. x() X(s)
1. 8(r) 1
2. u(t) 1/s
3.u(h) - ut -a) 1-e®
s
4. e~at 1
s+a
5.t -
S
1 n'
6.1 e
7. te~ #
(s+a)’
8. e _nl
(S+(1)n+l
9. sin wt @
2+ o
10. cos ot el
§2+0*
ssin 0+ wcos O

11. sin(wf + 0) > >
K 0)

12. cos(wr +6) 5€0s0 - wsin®

S+’
13. e~“sinwt %
(s+a)” +w
14. e~“coswt %
(s+a)” +o
15.  sin ot %
(s +%)
2 2
16. t cos wt ST
(s* + 0*)*
17. sinh ot .
KRt O)
18. cosh wt ~ al >
sS -

2 Defined for t > 0; x(f) = 0 for t < 0.
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Example 3.3
Obtain the Laplace transform of
x(©) = () = 3ult) + 5e*'u(D).

Solution
By the linearity property,
X(s) = L[8(0)] - 3LMuO)] + 5L[e *u®)]
1 1 P+45-6

=1-3-45— =
s s+2 s(s+2)

Practice Problem 3.3  Find the Laplace transform of x(t) = [cos3t + e=>u(?)

2
Answer: x(s) = 25 *55+9
(s+5)(s*+9)

Example 3.4

Determine the Laplace transform of x(t) = fu(t-1).

Solution
We can rewrite x(t) as

xt) =t =1+ D2ult =1 = ¢ =D ult =) =20 = Dult =N+ ult =1

Using the time-shifting property, we obtain

X(s)=e™" [%—%+1j

N N N

Practice Problem 3.4 Find the Laplace transform of x(t) = e=*'cos2tu(t)

Answer: _ S*t3
(s+3P%+4
Example 3.5

Determine the transform of the gate function in Figure 3.5a and the triangular
pulse in Figure 3.5b.

Solution
(@) The gate function in Figure 3.5b can be expressed as

gty =ul®)—ult -1
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g h(?)

<~V
B 4

0 1
(@ (b)

FIGURE 3.5 For Example 3.5.

We know that the Laplace transform of u(t) is 1/s. We apply the time shift
property to the second term and obtain

(b) The signal may be described as h(t) = tg(t). Using the frequency differentia-
tion property,

H(X):_dC(s) __dfl=e”) 1 e’ e~
ds ds s

Alternatively, we can express h(t) = r(t) — r(t = 1) — u(t — 1). Taking the
Laplace transform for each term gives the same result.

Practice Problem 3.5 Find the Laplace transform of the signals x(t) and y(t) in
Figure 3.6.

_ a(s+2) =S
Answers: (a) X(s) = 167, (b) Y(s) = %
s+2 s +m
x(t)
A
¥(t)
1
o2t
/ 1 sin ¢
0 1 Vt 0 1 Vl’

(a) (b)

FIGURE 3.6 For Practice Problem 3.5.



The Laplace Transform 125

Example 3.6

Let the Laplace transform of a signal x(t) be

s+2
X(s) = —""—
s +35+5

Determine the Laplace transform of the following signals:
@ y® = 3x(t/2)
(b) z(t)=tx(t - 1)
dx
ht)=3—
(© h@®) o

t
d) g()= J.x(r)d'c
0
Solution
(@) We apply the scaling property with a = 1/2.
6(25+2) 12(s+1)

YO =3 (X = e 50945 ~ a5 46545

(b) z(V) = tx(t=1) = (=1)x(t=1) + x(t=1)
Taking the Laplace transform of each term and using the shifting and
differentiation properties, we obtain

d [(s2 +35+5)(1)—(5+2)(25+3)]
Z(s)=—e"* I X(s)+e~*X(s) =—e*

+e*X(s)
s (s* +35+5)?

(s> +4s+De  (s+2e”

© (2 +3s+5?%  (s°+3s+5)

(c) Applying the differentiation property,
H(s) = 3[sX(s) — x(0)]

The initial-value theorem gives

. . sP+2s . 1+2/s
x(0) = lim sX(s) = lim =1 =
s s>0 s 43545 s> 143/5+5/s
2 p—
His) =3 2s +2s 1le 23(s+5)
s°+3s+5 s°+3s+5

(d) Using the integration property,

1 _ s+2
s s(s?> +3s5+5)
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s+2

. Find the Laplace transform of:
s(s+

Practice Problem 3.6 Let H(s) = L[h(t)] =

@) h(t = 2), (b) h(40), () %h(t), (d) h©*h(@®

(s+2)e'25, b s+8 (c -3 () (s+2)?
s(s+5) s(s+20) s+5 (s +5)?

Answers: (a)

Example 3.7

Determine the initial and final values of x(t), if they exist, given that

2
s°=2s5+1
X§)=—"—5————
(s=2)(s* +25+4)
Solution
1 2+1
3 _ 2 )
X(0) = lim sX(s) = lim — > 25 *5 i s sty
s soo (s—2)(s* +25+4) o= 2 2 4
T-= | 1+=+—
s s s

One pole (s = 2) is not in the left-half plane. x(c0) does not exist.

Practice Problem 3.7 Find the initial and final values of

_ s*+3
S +4s*+6

X(s)

Answer: x(0) = 1; x(co) does not exist.

3.4 THE INVERSE LAPLACE TRANSFORM

For a given X(s), we can obtain the corresponding x(f) by using Equation 3.4, but this
requires contour integration, which is beyond the scope of this text. We will use an
easier approach by employing the partial fraction expansion of X(s) and matching
entries in Table 3.2.

In most cases, we can express X(s) in the standard form of

_ N(s)
X(s) = Do) (3.61)

where
N(s) is the numerator polynomial
D(s) is the denominator polynomial
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Equation 3.61 can be expressed as

N(s) b,s"+ by + by 8" 4+ by s+ by

X(s)= 3.62
() D(s)  a,s"+a,8" +a, 8"+ as+a (3.62)

We can express X(s) in terms of factors of N(s) and D(s) as
X(s) = N(s) _p (s+2)(5+25) (s +2,) (3.63)

S D(s)  (s+p)(s+py)(s+p,)

where k = b, /a,. The roots of N(s) = 0 are called the zeros of X(s), that is, the values
—Z1,—Zp»- - -»Z,, are the zeros of X(s).

Similarly, the roots of D(s) = 0 are the poles of X(s), that is, the values —p,,—p,.,....p,
are the poles of X(s). We assume that X(s) is proper (m < n), that is, the degree of N(s)
is less than the degree of D(s). (In case X(s) is not proper (m > n), we use long divi-
sion to reduce it proper fraction.) We use partial fraction to break X(s) down into
simple terms whose inverse transform is obtained by matching entries in Table 3.2.
Partial fraction expansions are useful in finding the inverse Laplace, inverse Fourier,
or inverse z-transforms. Thus, to find the inverse Laplace transform of X(s) requires
two steps:

1. Use partial fraction expansion to break X(s) into simple terms.
2. Refer to Table 3.2 to obtain the inverse Laplace transform of each term.

We will now consider the three common forms X(s) may take and how we apply the
two steps to each form.

3.4.1 SimpLE POLES

A simple pole is a first-order pole. If the poles s = —p,,—p,,...,—p, are simple and
distinct (p; # p; for all i # j), then D(s) in Equation 3.63 becomes a product of factors,
so that

X(s)= NGs) (3.64)
(s+p)(s+p2)--(s+pa)
Using partial fraction expansion, we decompose X(s) in Equation 3.64 as
X(s):L+k72+---+L (3.65)

s+p S+ S+ Py
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To get the expansion coefficients k, k,,..., k, (known as the residues of X(s)), we mul-
tiply both sides of Equation 3.65 by (s + p,) for each pole. For example, if we multiply
by (s + p;), we obtain

(s+ pX(s) = ky + SEPR | (oK, (3.66)
S+ Py S+ P

Setting s = —p, in Equation 3.66 leaves only &, on the right-hand side of Equation
3.66. By isolating k, this way, we obtain

(s+p)XG)__ =h (3.67)

In general,

ki =(s+ pi)X(s)

(3.68)

S=—Dij

This is referred to as Heaviside’s formula. From Table 3.2, the inverse transform of
each term in Equation 3.65 is

Lk!(s+a)] = ke u(t) (3.69)

Applying Equation 3.69 to each term in Equation 3.65 leads to the inverse Laplace
transform of X(s) as

(1) = (ke ™" + hepe ™ e+ ke Ju(t) (3.70)

3.4.2 RepeaTeD PoLEs

If X(s) has repeated poles, we employ a different strategy. Let X(s) have n repeated
poles at s = —p, then we may represent X(s) as

kn + kn—l Fee gt kZ kl

TsHp) Gpy T Hp) s+p

X(s) +X,(s) G371

where X,(s) stands for the remaining part of X(s) that does not contain the repeated
poles. We find the coefficient &, as

ky=(s+p)"X(s)| (3.72)
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as in Equation 3.68 To determine k,_;, we multiply each term in Equation 3.71 by
(s + p)r, differentiate, and then set s = —p to get rid of the other coefficients except
k,_;. Thus, we obtain

d n
ko == (s + )" X(5) ] (3.73)
ds —p
We repeat the same process to get
b= L Tt prxo)] (3.74)
g LT -, '
The mth repetition gives
1 d” \
k,_, = EdTm[(s +p) X(s)]x_p (3.75)
where m=1, 2, 3,..., n — 1. From Table 3.2,
n-1_-—at
e L e (3.76)
(s+a)" (n-1)!

We apply this to each term in Equation 3.71 and obtain

x(t)=| ke +kyte ™ + ﬁfe”" +oeet ky e u®)+ x| (377)
21 (n—1)!

3.4.3 ComprLex PoLEs

We now consider when X(s) has complex poles. Complex poles occur in complex con-
jugate pairs so that the number of poles is even. A pair of complex poles is simple if
it is not repeated. Simple complex poles may be handled the same way as simple real
poles, but the procedure involves complex algebra, which can be intimidating. An
easier approach involves completing the squares. The idea is to express each com-
plex pole pair (or quadratic term) in D(s) as a complete square such as (s + o)> + >
and then use Table 3.2 to find the inverse of the term.

For the sake of simplicity, we will assume that X(s) has only one complex pole
pair. If X(s) has complex roots, its denominator D(s) will contain a quadratic term
and X(s) may have the form

A]S + A2

X(s)=— + X,(s) (3.78)
s“+as+b
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where X|(s) stands for the remaining part of X(s) that does not contain this pair of
complex poles. We complete the square by letting

sP+as+b=s*+2as+ 0o’ +p* = (s + o)’ +p’ (3.79)

and we also let

A15+A2 =A1(S+(X)+BIB

Thus, Equation 3.78 becomes

Al (S + OL) i 31B

X(s)= 2 . a2 2 . a2
(s+a) +p° (s+a) +PB

+X,(s) (3.80)

Using entries in Table 3.2, we obtain the inverse Laplace transform of each term in
Equation 3.80 so that

x(t) = (Ale’“’ cosBt+ Bie  sin Bt)u(t) +x,(0) (3.81)

The sine and cosine terms can be combined if desired. We use

AcosB+ Bsin® = Rcos(0—0) (3.82)

where
R=VA’+B’
¢ =tan"'(B/A)

In addition to the three common forms considered above, we can have two other
cases. First, the term may involve e~*". For example, X(s)e=*" corresponds to x(t — T')
u(t — T) using the time-shifting property. Second, for X(s) = N(s)/D(s), when the
degree of the numerator N(s) is higher than the degree of the denominator D(s), we
use long division to express X(s). These two cases are best illustrated with Examples
3.13 and 3.14.

Example 3.8

Find the inverse Laplace transform of
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Solution
The inverse transform is obtained by consulting Table 3.2 for each term.

_ p a2 Y O N S
X0 = £ (1) £ (Sj £ [5_1) 3 (52+9j

=38(t) + (2 + 4e' =3 cos 3t)ult)

Practice Problem 3.8 Determine the inverse Laplace transform of

1 2 4
X()=—5———+
s s+3 P44

Answer: (t2—=2e73t + 2sin2t)u(t)

Example 3.9

Obtain h(t) given that

His) = ———
(s+MN(s+3)

Solution
In the previous example, the partial fraction was provided. Here we determine the
partial fraction. We let

4 A B
Hg)=— > 2 5 9.
s (s+ND(s+3) s+1+s+3 (3:9.1)

where A and B are constants. The constants can be determined in two ways:

Method 1: Residue method

A=+ DM, = : S - (i) _2
s=—1

B=(s+3Hls),_, = i - % _5
5=-3 -

Method 2: Algebraic method
Multiplying both sides of Equation 3.9.1 by (s + 1)(s + 3) and equating the numera-
tor, we get

4=A(s+3)+B(s+1)

Equating the coefficients of like powers of s,

constant: 4 =3A + B
s:0=A+B B=-A

131
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Solving these gives A =2, B = -2
Thus,

4 7&_ 2
(s+MD(s+3) s+1 s+3

By taking the inverse transform of each term, we obtain

h(t) = (26" —2e™t ) u(t)

Practice Problem 3.9 Find x(t) if

10s

X)) =——""——
(s+D(s+2)(s+3)

Answer: x(t) = (=5e~t + 20e~2—15e=3)u(t)

Example 3.10

Determine x(t) given that
257 +4s+1

(s+ND(s+2)°

Solution
The previous example is on simple roots, while this example is on repeated roots. Let

28 +4s+1 A N B N C N D (3.10.1)
(s+DGs+2° s+1 s+2 (s+2?% (s+2° o

We can determine the constants A, B, C, and D in two ways:

Method 1: Residue method

2441

A=F)(s+ |-y = - _
(s)( )\ =

D:F(s)(s+2)3‘5:,2:8_8+1:,1
-2+1

c:i&+ﬁmﬂ

d{252+45+1}

ds oo ds| +) |
s+ )As+4) -5 +4s+ x| 257 +45+3]
(s+17 L, e
S=- s=-2
8-8+3

3
1
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1d?

1d|2s%+45+3
B=—2 [(s+2°X =——| =
stz[(s+) <s)]5:_2 zds[ Gl }
5+ @s+ ) -(52 +45+3)x2s 4D _ -2 |
2s+1* ‘ ) 2(5+1)3‘5—-2
:;2:1
-2

Method 2: Algebraic method
Multiplying Equation 3.10.1 by (s + 1)(s + 2)° and equating the numerator, we
obtain

252 +45+1=Als+2° +B(s +D(s+ 2 +C(s+ N(s+2)+ D(s +1)

or
252 +45+1=A(s® +65> +125+8) + B(s® +55% + 85+ 4) + C(s* + 35+ 2)+ D(s + 1)
Equating coefficients,

$:0=A+B—>B=-A

$?:2=6A+5B+C >2=A+C
$:4=12A4+8B+3C+D > 4=4A+3C+D
Constant: 1=8A+4B+2C+D —»>1=4A+2C+D

Solving these simultaneously gives A =— 1, B =1, C = 3, D = -1 so that Equation
3.10.1 becomes

-1 1 3 1
7+ —

X(s) =

Ts+l s+2 (s+2?7 (s+2)°

By taking the inverse transform of each term, we obtain

2

x(t) = [—e‘ +e 4+ 3te™ — % e ] u(t)

Practice Problem 3.10 Obtain y(t) if

12

YO =i e

Answer: 3e~*=3e2 + 6te2)u(t)
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Example 3.11

Find the inverse transform of

s+1

O = 3 s 315

Solution
G(s) has a pair of complex poles ats? + 2s + 5 =0ors = -2 + j2. We let

s+1 A Bs+C
Gls) = 2 = 2
(S+2)(s"+2s+5) s+2 s +2s+5
A=Gs)(s+2)| ll

5:—2: 5
S+1=A(s?+25+5)+B(s* +25) +C(s +2)

Equating coefficients:

52:0=A+B—>B=—A:%

s':1=2A+2B+C=0+C>C=1

9 1=5A+2C=-1+2=1

G V5 L USsHT _SV5 US4 4/5
Ts42 (5412422 s+2 (s+102+422 (s+12+22

g(t) = (-0.2e7* +0.2e™ cos(2t) + 0.4e ™ sin(2)ult)

Practice Problem 3.11  Find v(t) given that

25+26
V)= —
s(s®> +4s+13)

Answer: v(t) = [2 —2e cos3t — % e'sin BtJ u(e).

Example 3.12

Consider the rectangular pulse or gate function x(t) = u(t) — u(t — 2). Obtain y(t) =
x(O*x(0), that is, the convolution of the rectangular pulse with itself.

Solution
The Laplace transform of x(¢) is

1 -2s
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Using the convolution property,

Y(s) = X(s)X(s) = X2(s) = %(1 —2e 4 e““)
s

Taking the inverse Laplace transform of each term,
y(t) = x(t) * x(t) = tu(t) — 2t = 2) + (t — 4)ult — 4)

=r(t)=2r(t=2)+r(t—4)

which is a triangular pulse, as expected.

Practice Problem 3.12  Given the unit ramp function r = tu(t) and the gate func-
tion g(t) = u(®) — u(t — 1), use the convolution property to find y() = r(t*g(®).

Answer: y(t) = 0.582u()—0.5(t=1)u(t-1)

Example 3.13

Determine the inverse Laplace transform of

X(s) = se ¥ 43
s(s®> + 55+ 4)
Solution
Let
X(s)= Xi(s)e™ + X, (s)e ™™ (3.13.1)
where
0 P R (3.13.2)
s(s+55+4) (s+D(s+4)
1 1
Xo(s) = = (3.13.3)

T s(s2+55+4)  s(s+N(s+4)

We now use partial fractions to obtain x;(t) and x,(t) from X,(s) and X,(s), respec-
tively. Let

1 A B
Xi(s) = =+
(s+D(s+4) s+1 s+4
where
_ 1 1
s+4f_, -1+4 3
3271 v _1
s+1 —4+1 3
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Hence,

x(t) =~ (e —e™ )ul) (3.13.4)
Similarly,
X2(5)2;22+£+L
s(s+MD(s+4) s s+1 s+4
where
ce 1 | _t_1
(s+0(s+4)|_, (4 4
SR N R B |
ss+4),_, 1B 3
B N R R
ss+1)|_, (4=3) 12
Thus,
LA .
s(s+Ns+4) s  s+1 s+4
From this, we obtain
LI I R (3.13.5)
=|——— — t 15
Xz() |:4 3 +126 :|U()
From Equation 3.13.1,
(3.13.6)

x(t) = x1(t = 2)ult — 2) + x,(t = 3ult —3)

Substituting Equations 3.13.4 and 3.13.5 into Equation 3.13.6 finally gives

1 —(t-2) —4(t-2) 1 1 —(t-3) 1 —4(t-3)
—le -e ut=2)+|———e +—e u(t-3
( ) 4 3 12 ( )

x(t) = 3



The Laplace Transform 137

Practice Problem 3.13 Determine the inverse of

1—se™
(s+N(s+2)

Answer: (e~‘—e2)u(t) + (e~ =22t u(t—4).

Example 3.14

Obtain g(t) given that
S +55°+10
s*+35+2

Solution

The degree of the numerator polynomial is greater than the degree of the denomi-
nator. In this case, the fraction is a proper one. The numerator is divided by the
denominator by long division. We use long division until the remainder is one
degree less than the denominator polynomial.

s+2
s +35+2|s> +55> +0s+10
s> +3s242s
25> —25+10
258’ +65+4
—-85+6
Thus,
C(S):5+2+2_857+6
S°+3s+2
Let G(s) = s + 2 + Y(s), where \/(5)22_857+6
$°+3s5s+2
Let y(s):ﬂ:iﬁLi
(s+D(s+2) s+1 s+2
where
4_8s+6l 846 .,
s+2 |, -1+2
B:—ss+6\ _16+6 _
s+1 szz -2+1
14 22

() =——-22
s+1 s+2
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Thus,
Gls) = 54—2+i—£
s+1 s+2
Taking the inverse of each term gives
g0 =50+ 250+ (14e™ ~ 226 Ju)
dt

Practice Problem 3.14 Find y(t) given that

s(s+1)
(s=N(s+2)

20 -2t
Answer: y(t) = 5(t)+§(e —e™ )u(t)

3.5 TRANSFER FUNCTION

Now that we have mastered finding Laplace transform and its inverse, we begin the
application of the Laplace transform to the study of continuous-time systems. We
begin with the concept of transfer function.

We know from Chapter 2 that the output y(f) of a continuous-time system is the
convolution of the input x(f) and the impulse response A(?), that is,

y(t) = x(1) * h(1) (3.83)

By applying the convolution property, we obtain

Y(s)=X(s)H(s)

or

_Y()
© X(s)

H(s) (3.84)

The Laplace H(s) (which is the Laplace transform of A(¢)) is known as the trans-
fer function or system function of the system. The transfer function of a system
describes how the output behaves with respect to the input.

The transfer function H(s) is defined as the ratio of the output response Y(s) to
the input excitation X(s), assuming all initial conditions are zero.

Figure 3.7 shows the relationship between the impulse response A(f) and transfer
function H(s). Given the system transfer function, we can perform extensive system
analysis and design without having to apply specific signals to the systems.
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X()
My 0L soesorh T w9 XeH)

FIGURE 3.7 Impulse response A(f) and transfer function H(s).

H(s)

Hz(s)

FIGURE 3.8 Parallel interconnection of two systems.

A linear system is often specified in terms of some block diagram. Here we con-
sider three types of interconnections.

Consider a parallel interconnection of two systems with transfer function H,(s)
and H,(s) with single-input X(s) and single-output Y(s), as shown in Figure 3.8.

Y(s)=[ Hy(s)+ Hx(s)] X(s) (3.85)
or
_Y@) _
H(s)= Xy~ H,(s)+ H,(s) (3.86)

where H(s) is the transfer function for the overall system.

We next consider a series interconnection (or cascade connection) of two systems
with transfer function H,(s) and H,(s) with single-input X(s) and single-output ¥(s),
as shown in Figure 3.9.

Y(s) = H,(s)H,(s)X(s)
or

Y(s)
X(s)

H(s) = = H,(s)H,(s) (3.87)

where H(s) is the transfer function for the overall system.

H1(S)

\ 4

X(s) ——» Hy(s)  —— 1)

FIGURE 3.9 Series interconnection of two systems.
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X(s) + U(s)

F(s)

A

FIGURE 3.10 Feedback interconnection of systems.

Finally, we consider the feedback configuration in Figure 3.10. In this case, the
output is feedback to the input. Negative feedback is common in practice because
positive feedback can cause system instability. From Figure 3.10,

Y(s)=G(s)U(s) (3.88)
But
U(s)=X(s)—F(s)Y(s) (3.89)
Substituting Equation 3.89 into Equation 3.88 gives

Y(s) = G(s)(X(s) = F(s)Y (5))
or

Y()+G(s)F(s)Y(s) = G(s)X(s) (3.90)
Dividing both sides by X(s) gives the transfer function for the overall system as

H(s)=— &)

="’ (3.91)
1+ F(s)G(s)

There are two special cases of this. First, if the subtractor in Figure 3.10 is an adder
instead, then Equation 3.91 becomes

G(s)
H(s)=——F"~*"— 3.92
) = F5)GG) (392
Second, for unity feedback F(s) = 1, and Equation 3.91 becomes
H(s)= 18 __GB) (3.93)

T X(s) 1+G(s)
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Example 3.15

The output of a linear system is y(t) = e~‘cos4t u(t) when the input is x(t) = 10e~u(t).
Find the transfer function of the system.
Solution

If x(t) = e~tu(V) and y(t) = 10e~tcos4t u(t), then

1 ~10(s+1)
X(s)—s+1 and Y(S)_(s+1)2+42

Hence,

CY(s)  10(s+1*  10(s* +2s+1)
X(s) (s+1*+16 s> +2s5+17

To find h(t), which is the inverse Laplace transform of H(s), we write H(s) as

4

H(s):10—4027
ST+2s+17

Taking the Laplace inverse of each and using Table 3.2, we obtain

h(t) =108(t) — 40e™" sin 4t u(t)
Practice Problem 3.15 The transfer function of a linear system is

H(s) = 25~

546
Find the output y(t) due to the input e=3'u(t) and its impulse response.
Answers: (—2e73t + 4e-%u(t), 28(t)—12e-°tu(t)
Example 3.16

Find the transfer function for the feedback system shown in Figure 3.11.

Solution
We apply Equation 3.87 to obtain

E; = GGoh
Y = G3E3
Applying Equation 3.85,
E=X-RY

Ey=E—-hRY
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X(s)+ __Ey(s) E5(s)

Oyl 0 L] e st G IR > 10

A

A

F(s) <

Fz(s)

A

FIGURE 3.11  For Example 3.16.

If we eliminate E,, E,, and E,, we get

Cl =GG [X-FRY]-HY

3
Rearranging things leads to the transfer function:

H(S) _ @ _ G1(5)Cz(5)c3(5)
X(s) 1+ R()Gs(5) + R()Gi(5)G(5)Gs(s)

Practice Problem 3.16 Obtain the overall transfer function for the feedback
system shown in Figure 3.12.

2s

Answer: H(s)= ———
4252 +35+3

X(s) + + 2/(s+2)

( ) 1/(s+2) > ¥(s)

1/s

1/s

A

FIGURE 3.12 For Practice Problem 3.16.
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3.6 APPLICATIONS

Besides applying Laplace transform to determine the transfer function of a system,
Laplace transform finds applications in many areas such as circuit analysis, control
systems, communication systems, speech control, and radar systems. In this section,
we will apply Laplace transform to three areas: integro-differential equations, circuit
analysis, and control systems.

3.6.1 INTEGRO-DIFFERENTIAL EQUATIONS

We use the Laplace transform in solving linear integro-differential equations
with constant coefficients. This basically involves employing the differentiation and
integration properties of Laplace transform to the terms in the integro-differential
equation. Initial conditions are automatically incorporated. We solve the resulting
algebraic equation in the s-domain. Using the inverse Laplace transfer, we convert
the solution back to the time domain. We illustrate the process with the following
examples:

Example 3.17

Consider the system characterized by

d? d _
d—t{+3?)t/—4y:e ‘ult)

Use the Laplace transform to solve the differential equation subject to

Solution
Take the Laplace transform of each term:

1
ZY _ U _ _ -
[s (s)—sy(0)—y (O)] +3[sY(s) - y(0) ] -4Y(s) o

We substitute the initial conditions

$2Y(s)—s—0+3sY(s)—3—4Y(s) = L
s+1

2
(52+3s—4)Y(s)=s+3+i=w
s+1 s+1

sS+4s+4 S +ds+4

(s> +3s=4)(s+10 (s=ND(s+N(s+4)
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Using partial fractions, we let

A B C

Y =
(s) (-1 (5+1 (5+4)
where
T+4+4 9
A==V, = o= =
1-4+4 1
B—(S‘*‘DY(S)L:J_ (-=2)(3) -6
16-16+4 _ 4
C= (5+4)Y(S)‘5:74 _m B 15
ThUS/

yigo 95 _ V6 4N15

(s=17 (s+10) (s+4)

Taking the inverse Laplace transform of each term,

y(t) = (ge‘ —le” + 4

1 a ¢
= A e ju()

Practice Problem 3.17 A casual LTI system is described by
y'(t)+y'(0) + 2y(t) = x(t)

For system input x(t) = 2u(t), find the output y(t). Assume zero initial conditions.

Answer: y(t) = (1-2e~t + e 2)u(t)

Example 3.18

Solve the integro-differential equation

t
s j VOO = 4u(t)
dt d

with v(0) = -1 and determine v(¢) for t > 0.
Solution

Take the Laplace transform of each term of the integro-differential equation.
We take the Laplace transform of each term:

4

[5V()~VIO)] + 2V(8) + 2 V(s) =
S S

5 4 45
[sV(s)+1]+2V(s) +;V(s) =5 V(s) = 17575
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s+ D+5 s+ L2 2
(s+D*+22  (s+D*+2% 2(s+1*+2°

Taking the inverse of each term leads to

v(t) = (e cos 2t + 2.5e™ sin 2t)u(t)

Practice Problem 3.18 Use Laplace transform to solve for x(t) in

t
x(t) = cost + J-eHx(k)d?»

0

Answer: x(t) :le[+lcost+lsint, t>0.
2 2 2

3.6.2 CirculT ANALYSIS

The Laplace transform is a powerful tool in analyzing electric circuits. The use of
Laplace transform in circuit analysis facilitates the use of various signal sources such
as impulse, step, ramp, exponential, and sinusoidal. Applying Laplace transform to
analyze circuits usually involves three steps:

1. Laplace transform the circuit from the time-domain to the frequency
domain (or s-domain).

2. The circuit in s-domain is solved using circuit analysis techniques (such
as voltage division, current division, nodal analysis, mesh analysis,
source transformation, and superposition) and we obtain the desired
quantity X(s).

3. Obtain the inverse Laplace transform of X(s) to get the desired solution x(7)
in the time domain.

The three steps are illustrated in Figure 3.13. Steps 2 and 3 are familiar. Only the first
step is new and will be discussed here. We transform a circuit in the time-domain to
frequency or s-domain by Laplace transforming each element of the circuit.

For a resistor, the voltage—current relationship in the time-domain is
v(t) = Ri(t) (3.94)
Laplace transforming this gives

V(s) = RI(s) (3.95)
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Circuit in Solution in
time-domain time-domain
A
Inverse
Laplace Laplace
transform transform
(step 1) (step 3)
A 4
Circuit in Algebra Solution in

s-domain (step 2) 7| s-domain

FIGURE 3.13 The three steps involved in analyzing a circuit with Laplace transformation.

For the inductor,

=L (3.96)

Laplace transforming both sides yields

V(s) = L[sl(s) —i(O’)] = sLI(s)— Li(0")

or

I(s)= L V(s)+ i) (3.97)
sL K
For the capacitor,
it =c P9 (3.98)
dt

This transforms into the s-domain as

I(s) = c[sV(os) - v(O’)] =sCV(s)—Cw(0")
or

v(07)

V(s)= i I(s)+——= (3.99)
sC K
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Notice in Equations 3.97 and 3.99 that the initial conditions are incorporated in the
transformation process. This is one of the key advantages of using Laplace transform
in circuit analysis. Another advantage is that a complete response (natural and steady
state) of a network is obtained at once.

Assuming zero initial conditions for the inductor and the capacitor, the previous
equations reduce to:

Resistor: V(s)=1(s)R (3.100)

Inductor: V(s) = sLI(s) (3.101)

Capacitor: V(s) = %I (s) (3.102)
s

Example 3.19

Find v,(t) in the circuit in Figure 3.14.

Solution
We first transform the circuit from the time-domain to the s-domain.

)= 2
S

TH=sl=s

0.2 inzi
sC  0.2s

>
s

Hence the frequency-domain equivalent circuit is in Figure 3.15. Using current
division,

5/s 2 5 2

Iy = X—=— x =

5/s+s+4 s s +4s+5 s
Vo4 - 40 A Bs+C

s(s>+4s+5) s s*+4s+5

2u(t) A _1 o2F 4Q Vo

FIGURE 3.14 For Example 3.19.
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YN ‘*1

2/s — 5/ 4 v,

?

FIGURE 3.15 s-Domain circuit for Example 3.19.
Equating the denominators,
40 = A(s* + 4s+5)+Bs* +Cs
Equating coefficients:
Constant: 40=5A—> A=8
s 0=4A+C>C=-4A=-32

s*>:0=A+B—>B=-A=-8

8 8s+32
s (5+27+1
8 8(s+2) 16

s (542741 (s+22%+1

Taking the inverse Laplace transform of each term, we obtain
Vo(t) = (8 —8eHcost—8e ™ sint)u(t)

Practice Problem 3.19 Using Laplace transformation, find v,(t) in the circuit in
Figure 3.16.

Answer: v,(t) = 3.2(e"'—e~®)u(t)

1Q

detu(t) v 20 025F —L— %

FIGURE 3.16 For Practice Problem 3.19.
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Example 3.20
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For the circuit in Figure 3.17, find H(s) = V,(s)/V,(s). Assume zero initial conditions.

Solution

Transform the circuit to s-domain as shown in Figure 3.18. Let

_ Iss+2) — (s+2)

z=1)6+2)
S

Using voltage division,

4
Z+1

2, 2 7z
s+2 ' 542 Z+1

Vi

s

[ S

S Vs+s+2  (sP+2s5+1)

s+2
H(S):EZ 2 % 242541
Vi s+2 s+2 +1
2
s +2s+1
20s+2
Mg = 25+
s°+3s+3
i 1Q 1H
- YN
+
Vs —1F Vo

FIGURE 3.17 For Example 3.20 and Practice Problem 3.20.

FIGURE 3.18 For Example 3.20.

20
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Practice Problem 3.20 For the circuit in Figure 3.17, obtain H(s) = /,(s)/,(s).
Assume zero initial conditions.

1

Answer: H(s) = ———
s“+2s+1

3.6.3 CoNTROL SYSTEMS

A major application of Laplace transform is found in the study of control systems.
An important consideration of control systems is their stability. In order for a control
system to be useful, it must be stable. We examine the bounded-input bounded-
output (BIBO) stability of systems.

A system is BIBO stable when the output remains bounded for all time for
every bounded input.

We can study the stability of a system either through its impulse response A(f) or
through its transfer function H(s). An LTI system is BIBO stable if and only if its
impulse response A(f) is absolutely integrable, that is,

J | h(t) | dt < oo (3.103)

This condition is satisfied if the impulse response decays exponentially with increase
in time.

We can determine whether a system is BIBO stable if its transfer function meets
some conditions. The transfer function can be written as

N(s) _ N(s)

H(s)=
D(s) (s+p)(s+py)--(s+pn)

(3.104)

H(s) must meet two requirements for the system to be stable. First, the numerator
degree of H(s) must not be larger than the denominator degree; otherwise, long divi-
sion would produce

R(s)

H(s)=k,s" +k, 18"+ + ks + ko +
(s) ! )

(3.105)

where the degree of R(s), the remainder of the long division, is less than the degree of
D(s). The inverse of H(s) in Equation 3.105 does not meet the condition in Equation
3.103. Second, all the poles of the transfer function must be in the left half of the
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s plane. This means that H(s) must not have poles in the right half of the s plane. Each
pole must satisfy p = — a + jo, where « > 0, that is, the real part of the pole must be
negative.

A system is BIBO stable if and only if- all the poles of its transfer function
H(s) lie in the left half of the s plane.

The system is considered unstable if one or more of its poles appear in the right
half s plane. If the transfer function has poles on the imaginary axis (i.e., with zero
real parts), the system is said to be marginally stable.

Example 3.21
Check the stability of a system with transfer function

2 p—
His) = 35 +25 10
S +35"+4s+2

Solution
H(s) can be expressed in terms of its numerator N(s) and denominator D(s).

N(s) 2 +5-10
He ) === =5—3 7.5
D(s) s> +3s"+4s+2

To determine the poles, we are only interested in the roots of D(s).

D(s) =5 +35" +4s+2=(s+D(s+1= (s +1+)

The roots of D(s) = 0 or the poles of H(s) are

pir==1 pa=-1+j, py=-1-j

All the three poles lie in the left half of the s plane and we conclude that the system
is stable.

Practice Problem 3.21 A system has its transfer function as

s+6
His)= 2
(s S+ +25+8

Check whether it is stable.

Answer: Unstable; it has two poles in the right half of the s plane.
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3.7

MATLAB is a powerful tool that can be used to do most of what we cover in
this chapter. The impulse, step, ramp, sinusoidal, and exponential responses of
continuous-time systems can be examined using MATLAB. In this section, we will

Signals and Systems: A Primer with MATLAB®

COMPUTING WITH MATLAB®

examine how MATLAB can be used to do the following:

We will illustrate these with examples. There are many other commands (such as
conv, deconyv, factor, pretty, Isim, freqs, etc.), which are related to what we cover in

Find Laplace transform: MATLAB has a Laplace transform command
X = laplace (x). If the expression produced by the command is com-
plicated, we can use a MATLAB command simplify (x) to reduce the
complexity.

Find inverse Laplace transform: This can be done in two ways. We may
use the command ilaplace to invert X(s). We may also use the command
residue, which will produce a vector consisting of the residues of X(s). We
then apply Table 3.2 to find x(?).

Find the roots of a polynomial: By using the command roots, MATLAB
can be used to find the roots a polynomial or the zeros, and poles of a trans-
fer function.

Find the time response: MATLAB can be used to find the impulse response
of a system by using the command impulse. We can also find the step
response of the system using the command step. For finding ramp response
or any other time response, we can use the command Isim.

Find the frequency response: The command bode produces Bode plots
(both magnitude and phase) of a given transfer function H(s). The frequency
range and the number of points are automatically selected.

this chapter; they can be examined by typing help control.

Example 3.22

Use MATLAB to find the Laplace transform of

x(t) = 28(t) + ™

Solution

We recall that the commands dirac(t) and heaviside(t) are used to represent the
unit impulse 8(t) and unit step u(t), respectively. The MATLAB commands are:

syms X t

b
X

2*dirac(t) + exp(-3*t);
laplace (x)

This produces the following result:

X

1/(s+3) + 2
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From this, we obtain

X(s):2+L
s+3

Practice Problem 3.22 Use MATLAB to obtain the Laplace transform of

x(t) = ult —1)—2e™.

Answer: X(s):le -

Example 3.23

Use MATLAB to find the inverse Laplace transform of

105’ +4
s(s+N(s+2)°

Solution

The MATLAB code is as follows:

syms s v V

V =(10*s™2 +4)/( s*(s+1)*(s+2)72 );
v = ilaplace (V)

This produces the following result:

v =
1-14*exp (-t)+ (13+22*t) *exp (-2*t)

so that

vit)=1-14et +13e 2 +22te™, t>0
Practice Problem 3.23 Use MATLAB to obtain g(t) if

$$+25+6
Cls) = sis+D*s+3)

Answer: (2 — 3.25e7t — 1.5te~t + 2.25e Y)u(t)
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Example 3.24

Use the residue command to find the Laplace inverse of

45’ +20s* +165° +10s* —12
s*+55% + 85 +4s

X(s)

Solution

This is an indirect way of finding the inverse Laplace transform. We specify the
numerator (num) and the denominator (den) of the transfer function X(s). We find
the residues of X(s) using the following code.

num = [4 20 16 10 0 -12]; % numerator coefficients in descending
powers of s

den = [1 5 8 4 0]; % denominator coefficients in descending
powers of s

[r,p,k] = residue(num,den); % call residue

r =

-15.0000

46.0000

2.0000

-3.0000

p:

-2.0000

-2.0000

-1.0000

& & O
o

This produces a vector r that has the residues and a vector p that has the corre-
sponding poles.

Notice that pole -2 is repeated. Also, since the order of the numerator of X(s) is
one greater than the order of the denominator of X(s), k contains two values. From
r, p, and k, we can write X(s) as

- s 15 46 2 -3
X(s) =4s+0s" + 2 + o (2F + P + 0

15 46 2 3
=45———+ >+
s+2 (s+2° s+1 s

Using Table 3.2, we obtain the inverse v(t) as

x(t) = 48'(t)—15e™ + 46te™ +2e™ —3ult), t=0

2
Practice Problem 3.24 Given that X(s) = s , use the residue command
(s+MN(s+3)

to find x(t).

Answer: 58(t)—22.5e73t+ 2.5e7, t>0
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Example 3.25

Use MATLAB to find the zeros and poles of

S +3s+1
s> +4s% +3s

Solution

We use the command roots to find the roots of the numerator to get the zeros, and
denominator to get the poles.

num [1 3 1];
den = [1 4 3 0];
z=roots (num) ;
p=roots (den) ;
This result is:
zZ =

-2.6180

-0.3820

p:

0

-3

-1

s*+45-2
s> +4s*+13s
Answer: Zeros: —4.4495, 0.4495, poles: 0, -2 + 3j, -2 - 3|.

Practice Problem 3.25 Repeat Example 3.25 for H(s) =

Example 3.26

Use MATLAB to plot the step response of a system whose transfer function is

H =St
(s+2)(s+3)

Solution
We first need to expand the denominator:

s+
s +55+6

H(s)

By definition, the step response is the response when the input to the system is the
unit step u(t). Using the MATLAB script below, we obtain the response as plotted
in Figure 3.19.

num = [1 1];

den = [1 5 6];

t =0: 0.1: 4;
y=step (num,den, t) ;
plot (t,y)

Practice Problem 3.26 Use MATLAB to plot the impulse response of a system
whose transfer function is given in Example 3.26. Hint: Use impulse (num, den, t).

Answer: See Figure 3.20.
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0.25 T T T T T T T

0.2

0.15

0.1

0.05

1.2 T T T T T T T

FIGURE 3.20 For Practice Problem 3.26.

Example 3.27

Use MATLAB to obtain the Bode plots for the transfer function

_100s
s +125+20

Solution

The MATLAB script for the transfer is shown below, while the Bode plots are in
Figure 3.21.

num = [100 0] ;
den = [1 12 20];
bode (num, den) ; %determines and draws Bode plots



The Laplace Transform

157

Bode diagram

1553
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FIGURE 3.21 Magnitude and phase Bode plots for Example 3.27.

Bode diagram
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FIGURE 3.22 For Practice Problem 3.27.

10%

Practice Problem 3.27 Repeat Example 3.27 for the transfer function

_ s+4
s +55+8

H(s)

Answer: See Figure 3.22.

3.8 SUMMARY

1. The Laplace transform converts a signal in the time-domain to the frequency
domain. Its unilateral form (used throughout this chapter) is defined as

Lx()]=X(s)= J.x(t)e’”dt
b

The values of s for which X(s) exists form the region of convergence.
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2. Laplace transform properties are provided in Table 3.1, while the Laplace
transform of basic common functions are listed in Table 3.2.

3. The inverse Laplace transform, £-![X(s)], can be found by using partial frac-
tion expansions along with the Laplace transform pairs in Table 3.2. The
partial fraction expansion of X(s) can be obtained when the poles of X(s) are
simple, repeated, complex conjugates, or a combination of these.

4. The transfer function H(s) of a system is the Laplace transform of the impulse
response h(f). H(s) relates the output response Y(s) and an input excitation X(s),
that is, H(s) = Y(s)/X(s), assuming all initial conditions are zero.

5. There are several applications of the Laplace transform. Some include the
solution of integro-differential equations, electric circuit analysis, and analysis
of control systems.

6. Using the Laplace transform to analyze a circuit involves converting each
element from time-domain to s-domain, solving the problem using circuit
techniques, and converting the result to time-domain using inverse Laplace
transform.

7. A system is considered stable if all the poles of the transfer function H(s) lie
in the left half of the s plane. Values of s for which H(s) = 0 and H(s) = oo are,
respectively, zeros and poles of H(s).

8. MATLAB is a convenient tool for finding the Laplace transform of a signal
or its inverse. It is also used in obtaining the time response and frequency
response of systems.

REVIEW QUESTIONS
3.1 A Laplace transform exists only in its region of convergence.
(@) True, (b) false
3.2 If X(s) is the Laplace transform of x(f), the variable s is known as:
(a) Laplacian, (b) complex frequency, (c) transfer function, (d) zero, (e) pole
3.3 The one-sided Laplace transform depends only on the value of the signal for
t>0.
(@) True, (b) false
3.4 The Laplace transform of 2u(f) is:
—2s
@Zh2olo
s N N s
s+4
35 Let X0 = 2)s+3)
The zero of X(s) is at
@ -4, (b) -3, (© -2, (d) -1
3.6 For the function given the previous question, the poles of X(s) are at

@ -4,(b) -3, -2, -1
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3.7 Given

s+3

X(§)=——"—
(s+D(s+2)
the initial value of x(f) with transform is
(a) Nonexistent, (b) oo, (¢) 0, (d) 1, (e) 1/6
—2s
7 The inverse Laplace transform x(¢) is

3.8 Let X(s)=2
S+

@) €2 Du(r—1), (b) e *2ur-2), (c) e~ *ut-2), (d) e=2u(t—4)
3.9 A network has the following transfer function:

s+1

A= 63

Is the network stable?
(@) Yes, (b) no

3.10 The MATLAB command for finding zeros and poles of a transfer function is
(a) Laplace, (b) ilaplace, (c) roots, (d) step, (e) impulse

Answers: 3.1a, 3.2b, 3.3a, 3.4c, 3.5a, 3.6b,c.d, 3.7d, 3.8b, 3.9b, 3.10c.

PROBLEMS

SecTIONS 3.2 AND 3.3—DFEFINITION OF THE LAPLACE
TRANSFORM AND PROPERTIES OF THE LAPLACE TRANSFORM

3.1 Find the Laplace transform of
10, O<r<l1
(@) X(1)=4-5 1<1<2
0, otherwise

(b) r(t) = t u(@).
3.2 Find F(s) given that

2t, O<r<l1
f(=|2, I<t<2
0, otherwise

3.3 Find the Laplace X(s) given that x(f) is
(@) 2t —4)
(b) Scost d(t—2)
(©) e'u(t—7)
(d) sin 2f u(t — )
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3.4 Find the Laplace transform of these signals:
@) x,(0) = te*u(r)
(b) x,(t) = tcos4t
© x,(0) = 8(t +2)
(d) x,(&) = Scos(2t + m/4)
©) x5(f) = Pu(-1)
3.5 Determine the Laplace transform of
@ x(@ =u() — u(-2)
(b) y(0) = te~"u(®)
3.6 Show that

2 2
@) B[cosz(wf)u(fﬂ = S(SS%ZJ;Z)
2
O £fsiw i ]= 2

3.7 Find the Laplace transform of x(f) shown in Figure 3.23.
3.8 Using the initial value theorem, find g(0) if

s+1
Gs)=—4+——"—
)= 6?1 115+5
3.9 Given that
2
F(s) = K +1(2)s+6
s(s+1)"(s+2)

evaluate f(0) and f(oco) if they exist.
3.10 Using Laplace transform, find the convolution x(#)*y(f) for the following cases:
@ x(0) = eu(®), y(@) = tu(?)
(b) x(0) = eu(@®), y(t) = e"'u(?)
(©) x(0) = (sin Hu(®), y(t) = (cos Hu(t)

x(t)
A

2

v

(=]
—
[
~
P
©
=z

FIGURE 3.23 For Problem 3.7.
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SECTION 3.4—THE INVERSE LAPLACE TRANSFORM
3.11 Obtain the inverse Laplace transform of the following functions:

@ X(s)= l+ge’s
s s

10
®) Y(s)=5——
(s) s*—5s+4
© =2
9 $2+25+10
3.12 Find the inverse Laplace transform of
s+2
a) G(§)=—5——F—
@ G(s) s* +4s* +3s
10e7**
(®) H(s)=———
® (3s+5)°
3.13 Find the inverse Laplace transform for
3s+1
a) X(§)=—5——"—
@ X s*+25+5
3s+7
b) Y(s)=—5———
(b Y(s) sT+35+2
s7-8
© Z(s)=—
2 -
12
d) H(s)=
@ H) (s+2)°
3.14 Find the inverse Laplace transform of the following functions:
20(s+2)
F(§)=—5——"—
@ PO = r6s+25)
65° +36s +20
(b) P(s)=
(s+D(s+2)(s+3)

3.15 Find y(f) that corresponds to

- - - -3
8¢ —de™* — 257 —6se™

2
N

Y(s)=

3.16 Find the inverse Laplace transform of these functions:

2
@) X(s):w
+1
34252 +3s5+1
(b) y(s):u

s2(s+1)
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3.17 Find the inverse Laplace transform of

@ Hs)= s(ss++42)

®) Glo=1 j)(:j i;ss +2)

© Fo="

@ D(s)= ﬁ
3.18 Let F(s)= %

(@) Use the initial and final value theorems to find f(0) and f{c0).
(b) Verify your answer in part (a) by finding f{(¥) using partial fractions.

SecTION 3.5— TRANSFER FUNCTION

3.19 Consider a system for which

dy(r)
dt

dx(t)

+5y(t) = + x(1)

Assuming that the system is causal, find the impulse response /(7).
3.20 Obtain the impulse response of the system represented by the following
equation:

d’y(t) |, dy()
dr’ dt

+y(1) = x(1)

Assume zero initial conditions.
3.21 A causal LTI system has the transfer function

s+2

H($)=————
() s2+25+5

Find the response y(f) due to the input x(7) = 2e~u(f).

3.22 Find the transfer function of the system shown in Figure 3.24.

3.23 Find the transfer function of the feedback system shown in Figure 3.25.

3.24 Determine the transfer function of the system shown in Figure 3.26.

3.25 For the system shown in Figure 3.27, obtain the transfer function H(s) =
Y(s)/X(s).
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X(s)

FIGURE 3.24 For Problem 3.22.

X(s)

FIGURE 3.25 For Problem 3.23.

s+2

s+1

A

» Y(s)

»Y(s)

Fl
4
X(s) G+ G,
Fo,
FIGURE 3.26 For Problem 3.24.
> Fz(s)
X(s) *
J— Gl(s) Gz(s)
Fl(S)

FIGURE 3.27 For Problem 3.25.

v
Q
5
=z
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e—2t u(t) I + y(t)
Y+
5(0)
te™t u(t)
(a)
etu(p)
T
u(t) eu) | »0)
-+
3(t)
(b)
FIGURE 3.28 For Problem 3.26.
2
+ H(s) =
(s+1)
X(s) Y(s)
Hy(s) = 025

FIGURE 3.29 For Problem 3.27.

3.26 For each of the systems shown in Figure 3.28, use Laplace transform to find y(7).
3.27 A manufacturing process is represented by the feedback control system shown
in Figure 3.29.
(a) Obtain the system transfer function
(b) Determine the system response y(f) when x(f) = u(t).
3.28 Determine the transfer function for the system shown in Figure 3.30.

SECTION 3.6— APPLICATIONS

3.29 Solve the differential equation
Y@+ 7y (@) +12y(1) = e "u(1)

subject to y(0) = -1, y'(0) =2
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X(s) +

FIGURE 3.30 For Problem 3.28.

3.30 Determine the complete response of the systems described by the following
differential equation:

Y2 + 2y (@) + y(t) = cos 2tu(t), y(07)=0, yP(0)=1
3.31 Obtain the solution to this differential equation:
Y2+ 2y (1) + (1) = u(r), y0)=1=y"0O")
3.32 A Butterworth high-pass filter with input x(f) and output y(?) is described by

d*x(1)
dr’

A1) | 4y DO
dt

e +y(1) =

Determine the impulse response.
3.33 Using Laplace transform, solve the following differential equation for # > 0

2. .
d—;+4ﬂ+5i =2¢7*
dt dt

subject to i(0) = 0, i'(0) = 2.

3.34 Obtain the transfer function of the circuit in Figure 3.31.

3.35 Consider the circuit shown in Figure 3.32. Find the transfer function H(s).

3.36 Obtain the current i () in the circuit of Figure 3.33.

3.37 Using nodal analysis, find v,(f) in the circuit of Figure 3.34.

3.38 Obtain the impedance Z(s) of the network in Figure 3.35.

3.39 Use Laplace transformation to determine the mesh currents /,(s) and I,(s) in
Figure 3.36. Let v, () = 2¢~' V.
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R
i(t)=y(2)
—>
L
YN
1.
x(2) R
FIGURE 3.31 For Problem 3.34.
1F
| |
| +
1Q 1F -
*(2)
¥(®)

10

FIGURE 3.32 For Problem 3.35.

0.5u(t) A >1 Q >1 Q

FIGURE 3.33 For Problem 3.36.
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10u(0) VC:> CT)u(t) 4

FIGURE 3.34 For Problem 3.37.

10

1F 2Q
2—v 3im

10

FIGURE 3.35 For Problem 3.38.

10 10

O Ay e

FIGURE 3.36 For Problem 3.39.

3.40 Investigate the stability of these systems:

s+2
R T
s+2
®) His)=73
5°+6
O HO TS
3
) Hs) = s” +10

$2+55+6

167
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3.41 Determine the stability of the systems represented by the following transfer

functions:

(@) H(s)= St D

O HEo =
© H(s)= %

3.42 Given the impulse response A(f) of an LTI system, determine if the system is
BIBO stable.

@ h@) = @ + 223t + Du(r)
(b) h(t) = e~'sindt, t>0
(© h(@®) =3 + 2u(r)

3.43 An LTI system is described by

d’*y(1) L, ()
dr? dt

+2y(1) = % —3x(t)

(@) Determine the transfer function of the system.
(b) Obtain the impulse response of the system.

SectioN 3.7— CoMmpuTING WiTH MATLAB®

3.44 Use MATLAB to find the Laplace transform of these functions for 7 > 0.
(@ P+1r2+2t-4
(b) t cos 3t
(c) e~'sin2t
3.45 Use MATLAB to find the inverse Laplace transform of the following functions:
@ Lpdp
s s
2

®) (s+1)°

s2+3s+1
s2+45+8
3.46 Consider the function

©

s2+6s5+10
Hs)=—4——F—
(5) S 472 +11s+5

Use the MATLAB residue function to obtain the inverse Laplace transform
of H(s).



The Laplace Transform 169

3.47 Use MATLARB to find the inverse Laplace transform

-3 2 -2
e’ +s5e”

X@$§)=—F"-—
(5) s> +3s24+2s

3.48 Use MATLAB command residue to find the inverse Laplace transform of each
of these functions:

35> +6s—10
a) X(s)=————
@ X&) =
$2+2s+1
b) Y(s) =4
(® ¥(s) s +4s>+65+5
© Z(s)_2s3+12s2+10s+1

s +16s* +85° + 25
3.49 A linear system is represented by its transfer function

2s+5

M= s+

Use MATLAB to determine and plot:
(@) The impulse response
(b) The step response.
3.50 Find the impulse response and the step response for each of the following

SyStemS:
1
@ H(s)=_ >+t
() s2+55+6
(b) H(s) = 5

s”+10s” +10s+4
3.51 Use MATLAB to find the zeros and poles of these functions:
s=2
@ —=—
(s+D)"+9
2 +25+5

() L F25E
s(s*+4s+13)

s2+10s+5
s +4s*+10s+6

©

3.52 Use MATLAB to determine if the systems represented by the following trans-
fer functions are stable:

@ H(s)= s°+125% +35+10

a 25t +205° + 255> +155 +12
4 3 2
s +2s" =35 +s5+1

(b) H(s)=—

S5t 4387 +3s7 +s5+1

4s° +155* +255° +19s* =145 =20
5% +85° +32s* + 645> +505% + 245 + 30

© H(s)=
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3.53 Obtain the Bode plots for the following transfer functions using MATLAB:

_ s(s+10)
@ H )= 06+ 50)

_ s+1
(s +2)(s* +22.55+16)

(b) H(s)



4 Fourier Series

Imagination is more important than knowledge.

—Albert Einstein

HISTORICAL PROFILE

Jean Baptiste Joseph Fourier

Jean Baptiste Joseph Fourier (1768—1830), French mathematician, known also as an
Egyptologist and administrator, was the first to present the series and transform that
bear his name. He was the first to propose that the periodic waveforms could be
represented by a sum of sinusoids. His major work, The Analytic Theory of Heat
in 1822, stated the equations governing heat transfer in solids. Although Fourier’s
results were not enthusiastically received by the scientific world, his work provided
the impetus for later work on trigonometric series and the theory of functions of a
real variable.

Fourier was born in France in 1768, the son of a tailor. Joseph’s mother died when
he was nine years old and his father died the following year. Fourier first attended
the local military school conducted by Benedictine monks. He showed proficiency in
mathematics and later became a teacher in mathematics at the same school. In 1793,
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he became involved in politics and joined the local Revolutionary Committee. Due
to his political involvement, he narrowly escaped death twice. He died in his bed in
Paris on May 16, 1830.

4.1 INTRODUCTION

This chapter is concerned with a means of analyzing systems with periodic exci-
tations. The notion of periodic functions was introduced in Chapter 1, where the
importance of sinusoids (or cosinusoids) was emphasized. In this chapter, we intro-
duce Fourier series, a premier tool for analyzing periodic signals

Although the Fourier series has a long history involving many individuals, the
Fourier series is named after Jean Baptiste Joseph Fourier (1768—1830), a French
mathematician and physicist. In 1822, Fourier was the first to suggest that any
periodic function can be represented as a sum of sinusoids. Such a representation
provides a powerful tool for analyzing signals and systems. System responses to
periodic signals are of practical interest because these signals are common.

Fourier analysis (Fourier series in this chapter and Fourier transform in the
next chapter) plays a major role in system analysis for a number of reasons. First,
Fourier analysis leads to the frequency spectrum of a continuous-time signal. The
frequency spectrum displays the various sinusoidal components that make up the
signal. Engineers think of signals in terms of their frequency spectra and of systems
in terms of their frequency response. Second, Fourier analysis converts time-domain
signals into frequency-domain representation that lends new insight into the nature
and the properties of the signals and systems. For many purposes, the frequency-
domain representations are more convenient to analyze, synthesize, and process.
Third, in the frequency domain linear systems are described by linear algebraic
equations that can be easily solved, in contrast to the time-domain representation,
where they are described by linear differential equations. It is for these reasons that
Fourier analysis is used extensively today in science and engineering.

This chapter begins with the trigonometric Fourier series and how to determine
the coefficients of the series. Then, we consider the complex exponential Fourier
series. We will discuss some properties of Fourier series. We will cover circuit analy-
sis, filtering, and spectrum analyzers as engineering applications of Fourier series.
We will finally see how we can use MATLAB® to plot line spectra.

4.2 TRIGONOMETRIC FOURIER SERIES

The Fourier series can be represented in three ways, the sine—cosine, amplitude—
phase, and complex exponential.

A periodic signal is one that repeats itself every T s. In other words, a continuous
time signal x(7) satisfies

x(t) = x(t +nT) “.1)

where
n is an integer
T is the fundamental period of x(f)
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Any periodic function can be expressed as an infinite series consisting of sine or
cosine functions. Thus, x(f) can be expressed as

x(1) = ag + a; cos Wyt + by sin Wyt + a, cos 2wyt + b, sin 2wt

+a; cos 3wyt + by sin 3@yt + -+ “4.2)

This can be written as

_ 9 z ” i
x(t) = i D (a, cos noyt + b, sin nwyt) “.3)
where
2n
o= @.4)

®, is known as the fundamental frequency (in rad/s). The coefficients as are called
the Fourier cosine coefficients including a,, the constant term, which is in reality the
Oth cosine term, and bs are called the Fourier sine coefficients. The Fourier coef-
ficient a, in the earlier equation is the constant or dc component of x(7). The Fourier
coefficients a, and b, (for n # 0) are the amplitudes of the sinusoids in the ac com-
ponent of x(f).

The Fourier series of a periodic signal x(¢) is a decomposition of x(¢) into a dc
component and an ac component that consists of an infinite series of harmonic
sinusoids.

A periodic function x(f) can be expanded as a Fourier series only if it fulfills the
Dirichlet conditions given as

1. x(#) should be integrable over any period; that is,
to+T
J. | x(2)|dt < oo
fo

2. x(#) has only a finite number of maxima and minima over any period
3. x(?) has only a finite number of discontinuities over any period

The process of determining the Fourier coefficients a,, a
analysis. The coefficients can be determined as follows:

and b, is called Fourier

n’

T
1
ao=— ! x(t)dt @.5)
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T
a, = %J‘x(t)cos nwyt dt
0

T
b, = % I x(t)sinnwyt dt
0

4.6)

@.7)

The fact that sine and cosine functions are orthogonal over a period 7 leads to the

following trigonometric integrals:

T T
jsin nwyt dt =0= Jcos nwgt dt
0 0

T

J. sin nwyt cos nwyt dt =0

0

T
J sin nwyt sinmwgt dt =0 = | cosnwot cosmwyt dt, m#n
0

© C—

T T

. T
Ismz noyt dt = By = J.cosz noot dt
0 0

These integrals will be used in finding the Fourier coefficients.
To find a,, integrate both sides of Equation 4.3 over one period.

T T w | T o | T
J.x(t)dt = J.aodt + Z J.an cosnwgt dt |+ Z J.b,, sin nwyt dt
0 0 n=l] o n=1| o

=a,+0+0

4.8)

4.9)

4.10)

“4.11)

@.12)

Using the identities in Equation 4.8, the two integrals involving the ac terms become

zero. Therefore,

T
~|A)c(t)dt =a,T
0
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or
1 T
a=— j x(t)dt @.13)
0

To find a,, multiply both sides of Equation 4.3 by cos mw,t and integrate over one
period.

T T w | T
Ix(t) cosmwyt dt = J.ao cosmmot dt + Z J. J. a, Cos nwyt cos mwyt dt

0 0 n=l] 9

© T

+Z J. b, sin nwyt cos mmyt dt

n=l| o

=0+§an +0 4.14)

The integral containing a, and b, becomes zero according to Equations 4.8 and 4.9,
respectively. The integral containing a, will be zero except when m = n, in which
case it is 7/2 according to Equation 4.11. Thus,

T
J.x(t)cos mwot dt = a, % m=n

0

or
2 T
a, = ?J.x(t)cos nwyt dt 4.15)
0
To find b,, multiply both sides of Equation 4.3 by sin mm,t and integrate over one
period.

T T w [T
jx(t) sin mwyt dt = Iao sin mwyt dt + Z Ian COS Nyt Sin mwyt dt
0 0 n=11 g

© T

+Z J-b" sin nwyt sin mwyt dt

n=l| o

=0+0+gbn 4.16)
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The integral containing a, and a, becomes zero according to Equations 4.8 and 4.10,
respectively. The integral containing b, will be zero except when m = n, in which
case it is 7/2 according to Equation 4.11. Thus,

T
j‘x(t)sin nwyt dt = b, %, m=n
0

or

T
b, = %J.x(t)sin nwyt dt 4.17)

0

Since x(f) is periodic the integration of Equation 4.5 over one full period from ¢, to
t,+ T or from —77/2 to T/2 instead of O to T gives the same results.

Equation 4.3 is the sine—cosine form of Fourier series. An alternative representa-
tion is the amplitude-phase (or polar) form:

X(1)=ap + ZA,, cos(nwot +by) 4.18)
n=1

This combines the sine—cosine pair at frequency nw, into a single sinusoid. We can
apply the trigonometric identity

cos(A+ B)=cos Acos B—sin Asin B 4.19)

to the ac terms in Equation 4.18 to get
ag + ZA” cos(nwyt + ¢,) = ay + Z(A,, cos ¢, ) cos nwyt
n=1 n=1

+ Z(—An sin g, )sin neot 4.20)
n=1

When we equate the coefficients of the series expansions in Equations 4.3 and 4.20,
we obtain

a,=A,cosd,, b,=-A,sing, 4.21)

A, =\d>+b?, $,=—tan"' b (4.22)
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These may also be related in a compact complex form as
A, <b,=a,—jb, (4.23)
The frequency components of the signal x(f) can be displayed in terms of the ampli-

tude and phase spectra. The frequency spectrum of x(f) is the combination of both
the amplitude and phase spectra.

Example 4.1

Given the periodic train of pulses shown in Figure 4.1, obtain Fourier coefficients
a, a, and b,. Plot the amplitude and phase spectra.

Solution
The signal can be expressed as

10, O<t<I1
x(t) =
0, T1<t<5

With T =5, o, = 2n/5 Using Equation 4.5,

T 1 5
2 :ljx(t)dt:l I10dt+IOdt ~Mo=2
TO 5 0 1 5

Next, we use Equation 4.6,

T 1
a, = %J‘x(t) cosnm,t dt = %JH 0 cosnm,t dt
0 0

. 1 .
SN Nt SINN®,
=4 ° ‘ =4 o

nm,

nw, ‘0

10

v

-5 -4 0 1 5 6

FIGURE 4.1 For Example 4.1.
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Similarly, using Equation 4.7 gives

T 1
b, = %J-x(t)sinno)ot dt = %JH Osinnw,t dt
0 0

’
-4 COSI’](DOI‘ :4{1—cosnmo}

nw, nw,

0

The Fourier series expansion of the signal is

> sinna, 1-cosnw, | .
x(t)=2+4z ————2COSNW,t +| ———— |sinnw,t
nw, nw,

n=1

Finally, we obtain the amplitude and phase spectra for the signal in Figure 4.1 by
using

A, =+ar+bi, ¢, = —tan 2
an

Applying these formulas for values of n =1, 2, ..., 8 produces the result in Table 4.1
From the table, the amplitude and phase spectra are plotted as shown in Figure 4.2.

Practice Problem 4.1 Obtain the Fourier series expansion for the waveform
shown in Figure 4.3.

Answer: y(t) =-0.5+ iSin nmt

e—i NTC
n=odd

TABLE 4.1
For Example 4.1
n a, b, A, ¢, (Degrees)
1 3.0273  3.0164 4.2735 —44.89
2 0.9355 52876  5.3697 -79.97
3 -0.6237 4.8584  4.8983 82.68
4 -0.7568  3.7541  3.8296 78.60
5 0 3.3634  3.3634 90
6 0.5046  3.8361  3.8691 -82.51
7 0.2673  4.3679  4.3861 —-86.50
8 -0.2339 43219 4.3282 86.90
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An
w

100

|
—_
(=
(=]

FIGURE 4.2 For Example 4.1: (a) amplitude spectrum and (b) phase spectrum.

FIGURE 4.3 For Practice Problem 4.1.
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g

FIGURE 4.4 For Example 4.2.

Example 4.2

Find the Fourier series expansion of the backward sawtooth waveform of Figure 4.4.

Solution

gt)=5-25,0<t<2,

T=20,=2n/T=n

2
a = j %I (5-2.50dt = 0.5[5t — 2.5t/2]]; = 2.5
0
T 2
a, = %J.g(t) cosnw,t dt = %J.(S —2.5t)cos nmt dt
0 0

Using the formulas from Appendix A.5,

1.
Icosat =—sinat
a

1 t .
J.tcosat :—zcosat+75|nat
a a

2

5 . F 25 —2.5t .
a, = ——sinnnt| +| == cosnnt +——sinnnt

nm , |n'n nm o

2
=0+ 252(cos2nn71)70=0
n’n
Similarly,

T 2

= %jg(t)sinnmot dt = %I(S—Z.St)sinnnt dt

0 0
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/1 /]

1
-4 -3 -2 -1 0 1 2

w
S
[$2}
o~

FIGURE 4.5 For Practice Problem 4.2.

We use the formulas
. 1.
sinat = ——sinat
a
. 1 . t
tsinat = —sinat ——cosat
a

a

2 2

5
b, = ——cosnnt
nm

2,2
n-T nm o

{—2.5 . 2.5t }
+ sinnmt + —— cos nmt
0

=O+O+i(cos2nn—0):i
nm nmw

Hence,

59 1
)=25+— ) — t
g(t) +rc E nsm(nn)

n=1

Practice Problem 4.2 Obtain the trigonometric Fourier series for the signal in
Figure 4.5.

= | 1= (=1)" _)"
Answer: z(t)=0.5- ucosnnu—( ) sinnmt

nm nm

n=1

4.3 EXPONENTIAL FOURIER SERIES

The sine and cosine functions can be represented in terms of complex exponentials.
It turns out that we can use complex exponentials to represent Fourier series. In many
respects, this makes for a simpler representation.
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The Fourier series representation of x(f) can be expressed in complex exponential

form as

o0
x(t) = Z c,e’"™

n=-ow

where
®, = 27/T is the fundamental frequency
the coefficients ¢, are given by

T
1 ,
¢, =— | x()e "™ dt
T .!: @)

“4.24)

4.25)

The exponential Fourier series of a periodic signal x(7) is a representation
that is the sum of the complex exponentials at positive and negative harmonic

frequencies.

By substituting the following Euler’s identities in Equation 4.3

1r . y
coSnmyt = E[e’"“’"’ +e ’"‘“0’]

sin Nt = i[ejnwol _e—jnwol] — _l[ejm»ot _e—jn(nol]
2j 2

we get

1 A » ) . .
x(t) =ay + EZan (gmoot 4 gmiment) _ Jjb, (ginot _ gminent)
n=1

=da +%Z‘O:|:(an—jbn)ejnwol+(an+jbn)e—jn(ogt:|

n=1

So the new coefficient ¢, will be

Co = o,

6= | <o,
2

C_n :C; — (an +an)

2

4.26)

@.27)

(4.28)

4.29)
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so that x(f) becomes

x(t)=cy + i[c,,e”‘”“’ +c_pe " ] 4.30)

n=1

The concise form is

x(0)= Y e, = Je, el @.31)

n=-—w

The complex Fourier coefficients ¢, can be readily obtained as follows using
Equations 4.6 and 4.7 for a,,, b,

T
1
Co =day = ?J‘X(t)dl (432)
0

Forn=1,2,3, ..., we have

T T
¢, = @ =jb) _ 1 J' x(1)(cos nwot — j sin nwet)dt = L I x(te "dt  (4.33)
2 T T
0 0
Similarly,

T
c_, :C: :M:lj (t)ejnmozdt
2 T

0

The last expression is equivalent to stating that for n = -1, -2, -3, ...

T
_ 1 — jnoot
Cp —?JAx(t)e 0t 4.34)
0

The three Equations 4.32, 4.33, 4.34 can be combined into one expression

T
C, = %J‘x(t)e’j”‘”mdt forn=0,+1,+2,+3, ... @35
0

Therefore, the complex Fourier series is

x(1) = Z ¢, et (4.36)

n=—o
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Equation 4.36 is also called complex frequency spectrum of x(#), which is formed
by both the complex amplitude spectrum (even symmetry) and the phase spectrum
(odd symmetry).

The three forms of Fourier series are now summarized as follows:

Sine—-Cosine Form

x(t)=ay+ Z (a, cosnwot + b, sin nwyt) @.37)

n=1

Amplitude—Phase Form

x(1) = ag + ZAn cos(naot + b, ) 4.38)

n=1

Complex Exponential Form

X(1)= Z ¢ e 4.39)

n=—o

The coefficients of the three forms of Fourier series (sine—cosine form, amplitude—
phase form, and exponential form) are related by

ALy = ay — jby =2c, (4.40)
or
2 2
¢, =|c, | 20, = 7\"’"2*@4 —tan P =4, (4.41)

n

if only a, > 0. Note that the phase 0, of ¢, is equal to ¢,

Example 4.3
Find the exponential Fourier series for x(t) = t, =1 < t < 1, with fit + 2n) = f(t) and
n is an integer. Plot the amplitude and phase spectra.

Solution
Since T =2, o, = 2n/T = . Hence,

1 T/2 1 1
o = I Ft)e e = - '[ te "™t
T 2

-T/2 ~1
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Using integration by parts,

u=t—->du=dt

dv = et 5y = - _1 e ™
2 2jnm
c, = 7#6’”’" + .1 '[ e "™t
2jnm 2jnm d
. .I 1
_ / —jnm jnm —jnmt
=——|e+e" |+ —55F——
2nm [ J 20’ (—))? ;
_ L _ —jnm . jnm
= cosnm e (e e )
cn:/(i+ 22/25in(nn)=/(_1) , n#0
nm 2n°m nm
We treat n = 0 as a special case.
1 1211
c0=fjte*°dt:7f - La-n-o
2 : 221-1 4

Thus,

X(t) — zcne/’nmot — Z(_»I)n niejmtt
T

n=-o n=—w
n=0

For different values of n, we calculate |c,| and 6, as shown in Table 4.2. By plotting
|c,| and 6, for different n, we obtain the amplitude spectrum and the phase spec-
trum shown in Figure 4.6. Notice that the amplitude spectrum is an even function,
while the phase spectrum is odd, as expected.

TABLE 4.2

For Example 4.3

N | ¢l ¢, (Degrees)
-3 0.1061 90

-2 0.1592 -90

-1 0.3183 90

0 0 0
1 0.3183 -90
2 0.1592 90
3 0.1061 -90
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le,|
A

0.3103

0.1592
‘ ‘ 0.1061

-3 -2-10 1 2 3 n
(@)

G 4
90°)

—’3*2—10 1‘ 23‘
-90°

FIGURE 4.6 For Example 4.3.

v

Practice Problem 4.3  For the periodic function y(f) = t?, 0 < t < T, obtain the com-
plex Fourier series for the case T = 2. Determine the amplitude and phase spectra.

©

2 )
. y(t)=1.333+ —— (14 jnm)e™
Answer: Y Z e J

n=-w
n#0

See Figure 4.7 for the spectra.

Example 4.4

Find the complex Fourier series of the signal in Figure 4.8.

Solution
T=2, o,=2n/T=n

501-t), O<t<1
f(t):{( ) <t<
0, T<t<2

T 1
l'[ Jeimod gt = j 501 e ™ dt
T
0
5 J 5 e /mtt1 5 e —jnmt !
EJ. *Inntdt I */nntdt 5 e ﬁ(_jnnt _ 1)
) —jnm ) jnm X
5 [e7 - ] 5 e 5 (=)
2 2 (jmm—1+2
2 —jnm 2t 2 —n*n?
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leal
A
1.333
0.6681
0.3223
1 | 02134
T T T T Ll
-3 -2 -1 0 1 2 3 n
()
by
A 0
-84
-82°
-72°
3, 2] -1, 0] 1 2 3 n
_g8p0 —-72°
—84°
(b)
FIGURE 4.7 For Practice Problem 4.3.
f®
| [\ [\
t
0 1 2 3 4 5

FIGURE 4.8 For Example 4.4.
But e = costn—jsinnx = cosnn + 0 = (—1)"

25[1-C0"] 25601+ jond | 2.5

Ch = -
jnm n’n’ n’n’

©

f(t) = Z c el

n=—w
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y(®)
A

10

-10

FIGURE 4.9 For Practice Problem 4.4.

Practice Problem 4.4 Obtain the exponential Fourier series expansion of y(t)
shown in Figure 4.9.

Answer: y(t) = z (=" ﬂe/nm
— nmn

4.4 PROPERTIES OF FOURIER SERIES

Some properties of Fourier series are discussed in this section. These properties
provide us a better understanding of the Fourier series.

4.4.1 LINEARITY

The Fourier series expansion for periodic signals x(f) and y(f) with the same period
is given by

X(1)= Z o, expl jnet ] 4.42)
(1) = Z B, expl jnot] (4.43)

If z(?) is a linear combination of x(f) and y(¥), then
7(t) = kyx(t) + ky y(2) 4.44)

where k, and k, are arbitrary constants. Then we can write

2t)= ) (e, + kB, )expljneot]= v, expljnot] (4.45)
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This implies that the Fourier coefficients are

Yn= klan + kZBn (446)

The linearity property is easily extended to a linear combination of an arbitrary
number of signals with period 7.

4.4.2 TIME SHIFTING

When a time shift is applied to a periodic signal x(7), the period T of the signal is
preserved. The Fourier series coefficient y, of the resulting signal x(t — t) may be
expressed as

T T
Yo = %J-x(t —1)exp[—jnwyt]dt = exp[—jm,t] %J‘ x(\)exp[—jnwo\]dh
0

0
= o, exp[—jnwyt] 4.47)
where o,is the nth Fourier series coefficient of x(f). Here, we have changed variables
by letting A = r—. That is, if
-x(t) i) a,

then
x(t—1)— 5, e o0t (4.48)

One consequence of this property is that, when a periodic signal is shifted in time,
the magnitude of the Fourier coefficient remains unaltered, that is, ly,| = la,|.

4.4.3 TiME REVERSAL

Time reversal property, when applied to a continuous-time signal, results in a time
reversal of the corresponding sequence of Fourier series coefficients. To determine
the Fourier series coefficients of y(f) = x(—f), consider

x-0= Y o, exp[—jr;m} (4.49)

n=-ow

By substituting n = —m, we get

YD =x(-n=a, exp[ j”;’“} (4.50)

n=-w
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Thus, we conclude that

x(t)—2>a,
4.51)

FS
(-t—E s,

An interesting consequence of time reversal is that when x(f) is even, that is,
if x(—f) = x(9), then its Fourier series coefficients are also even, that is, a_, = a,,.
Similarly, when x(¢) is odd, that is, if x(—7) = —x(#), then its Fourier series coefficients
are also odd, that is, a_, = —a

ne

4.4.4 TIME SCALING
Time scaling operation applies directly to each of the harmonic component of x(7). If

x(f) has the Fourier series representation x(t):z o, exp[jnwyt], then the

Fourier series representation of the time-scaled signal x(at) is

x(at) = Z o, expl jnwgat] 4.52)
That is,
x(at)—E>a, 4.53)

The Fourier series coefficients have not changed, the Fourier series representation
has changed because of the change in the fundamental frequency aw,.

4.4.5 EveN AND ODD SYMMETRIES

Three types of symmetries have been discussed—even, odd, and half-wave odd
symmetry.
A function x(7) is even if x(f) = x(-7), and odd if x(f) = —x(—7). Any function x(?) is a
sum of an even function and an odd function, and this can be done in only one way.
We know that any periodic function x(f), with period 2x, has a Fourier expansion
of the form

x(t) =ay + Zan cos(nwyt) + b, sin(nwt) 4.54)

n=1
If x(¢) is even, then all the b,s vanish and the Fourier series is simply

0

X(1)=ap + Za,, cos(nwyf) (4.55)

n=1
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If x(9) is odd, then all the a,, a,s vanish and the Fourier series is simply
X(1)= Zb,, sin(nwot) (4.56)
n=1
A periodic function possesses half-wave symmetry if it satisfies the constraints

x(t) = —x(l - gj 4.57)

If a function is shifted one half period and inverted, it looks identical to the original,
then it is called a half-wave symmetry. A half-wave odd symmetry can be even, odd
or neither.

ay=0, a,=0 and b,=0 forneven

T

2
a, = %Ix(t) cosnwyt dt, for n odd
0

4.58)

b, = x(t)sinnwyt dt, for n odd

e IES
O 10 | N

This shows that the Fourier series of a half-wave symmetric function contains only
odd harmonics (Figure 4.10).

(e}
~
~V

(b)

FIGURE 4.10 Typical examples of half-wave odd symmetric functions.
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4.4.6 PARSEVALS THEOREM

Parseval’s theorem states that if x(f) is a periodic function with period 7, then the
average power P of the signal is defined by

T
_1f-
P= T.([x (t)dt 4.59)

Again let x(f) be an arbitrary periodic signal with period 7 and consider the Fourier
series of x(f) given by Equation 4.24. By Parseval’s theorem, the average power P of
the signal x(¥) is given by

P=Ylef (4.60)

Parseval’s theorem states that the average power of the signal x(f) over one
period equals the sum of the squared magnitudes of all the complex Fourier
coefficients.

To prove Parseval’s theorem, assume x(¢) has a complex Fourier series of the usual form:

()= ) e, @y = (ZT“)

n=—o0

T
1 ,
n = t _jmumdt
“T7 J. xne
0
Xz(t) =x(t)x(t) = x(t)zcnejnwot = chx(t)ejnwotdt

T T
pP= % J' (t)dt = % j' Zc,,x(r)e-f"wdr
0 0
T

1 .
=— Y ¢, | x(t)e"™dt
SNIEC
0
S
P=2 laf

Parseval’s theorem can also be written in terms of the Fourier coefficients a,, b, of
the trigonometric Fourier series. The engineering interpretation of this theorem is

4.61)



Fourier Series 193

TABLE 4.3

Power Associated with Fourier Series Coefficients

Term Sine-Cosine Form  Amplitude-Phase Form  Exponential Form
DC term a? a’ lcol?

Others ez ) %An 2le,P = le, P+ le_

as follows. Suppose x(f) denotes an electrical signal (current or voltage), then from
elementary circuit theory x*(f) is the instantaneous power (in a 1 ohm resistor) so that

T
_1f-
P= T.([x (t)dt 4.62)

is the energy dissipated in the resistor during one period. In terms of the trigonomet-
ric Fourier series, Equation 4.61 becomes

0

P=a’ +%Z(a,2, +5?) 4.63)

n=l1

In terms of the amplitude—phase Fourier series, we have
1 0
P=a’+-) A? 4.64
) Z @.64)

Table 4.3 summarizes the power associated with Fourier series coefficients.

Example 4.5

The waveform in Figure 4.11a has the following Fourier series:

=245 |

cos(2n — Nt
2 m &@n-17 20 =D

Obtain the Fourier series of y(t) in Figure 4.11b.

Solution
If we take the derivative of x(¢) in Figure 4.11a, we obtain y(t) in Figure 4.11b.

0

dx 4A 1 . 2n

— = o Sin(2n —Nwt, ©®y = —

dt n2;(2n—1) 0 L
_BAX

= sin(2n — oot
nl & (2n-1) ( Joo @50
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x(t)
A
-T 0 T oT t
(a)
¥(2) &
1%

FIGURE 4.11 For Example 4.5.

But the slope of x(t) is the amplitude of y(0), that is,

Slope :Ti=—:vo——>A= (4.5.2)

Substituting for A into Equation 4.5.1 gives

©

y(t) = 47\/0 z (2n1— 7 sin(2n — TNyt
n=1

Practice Problem 4.5 Obtain the Fourier series of the function x(¢) in Figure 4.12a
from the Fourier series of y(t) in Figure 4.12b, which is given as

0

y(t) = ﬂz ! ] sin(2n — ot

T 2n—

n=1

0

vV, 2V,
Answer: x(f) = -2+ =2
2 T Z

sin(2n -t
2n-1

n=1

Example 4.6

For the waveform shown in Figure 4.13,

(@) Specify the type of symmetry it has.
(b) Calculate a; and b,.
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x(t)

Vo

] ulln

-2n -1 0 1 2n 3n
(a) A

(=
(]

FIGURE 4.12 For Practice Problem 4.5.

~V

FIGURE 4.13 For Example 4.6.

Solution

(@ This is an odd function so that a, = a, = 0.
(b) T=4,w,=2n/T=n/2

1

1
b, = 4 tsinn—mdt: 242 Sil nnt 2t osn—m
n°m 2 nm 2 o
= 242 ﬂ_i Osnl_o
n°m 2 nm 2
4(_1)(n—1)/2
, n=odd
_ n*n?
2(_1)n/2
, n=even
nm

a, =0, by = 4(-1)/(97?) = —0.04503

195
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ALK AL

-5-4-3-2-101 2 3 4 5 ¢t

FIGURE 4.14 For Practice Problem 4.6.

Practice Problem 4.6 Determine the trigonometric Fourier series expansion of
the signal in Figure 4.14. What type of symmetry does it have?

Answer: f(t)=l+%zi2 1—cos(ﬂj cos(n—m} even.
2w kin 2 2

Example 4.7

Calculate the average power in the signal

x(t) =4+2cos(2t —30°) + cos (4t —15°).

Solution
Using Equation 4.64, we get

P:42+%(22+12):18.5

Practice Example 4.7 Determine the average power in the signal

x(t) = 1+ 4 cos(60xt +10°) + 2 cos(120nt —30°)

Answer: 11.

4.5 TRUNCATED COMPLEX FOURIER SERIES

The Fourier series representation of x(f) can be expressed in complex exponential
form as

x(1) = Z ¢ e 4.65)

It is an infinite summation and to truncate x(¢) to finite partial sum of x,(f) at n = N,
we can write Equation 4.65 as follows:

N

xy(f) = Z ¢ e (4.66)

n=—N
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We expect the signal approximation x,(f) to converge to x(f) as N — oo. The behav-
ior of the partial sum in the vicinity of discontinuity exhibits ripples and that the
peak amplitude of these ripples does not seem to decrease with increasing N. Gibbs
showed that for the discontinuity of unit height, the partial sum exhibits an overshoot
of 9% of the height of the discontinuity, no matter how large N becomes. Thus, as
N increases, the ripples in the partial sum become compressed toward the discon-
tinuity, but for any finite value of N, the peak amplitude of the ripples remains con-
stant. This is known as Gibbs phenomenon. The Gibbs phenomenon (also known
ringing artifacts) is named after the American physicist J. Willard Gibbs.

Gibbs discovered that the truncated Fourier series approximation x,(f) of a signal
x(#) with discontinuous will in general exhibit high-frequency ripples and overshoot
x(#) near the discontinuities. If such an approximation is used in practice, a large
enough value of N should be chosen so as to guarantee that the total energy in this
ripple is insignificant. These are shown in the Figure 4.15 for various values of N. We
know that the energy in the approximation error vanishes and that the Fourier series
representation of a discontinuous signal such as the square wave converges.

4.6 APPLICATIONS

Fourier analysis finds engineering applications in circuit analysis, filtering, ampli-
tude modulation, rectification, harmonic distortion, and signal transmission through
a linear system. We will only consider three simple applications: circuit analysis,
spectrum analyzers, and filters.

4.6.1 CIRcUIT ANALYSIS

Fourier analysis enables us to find the steady response of a circuit to a periodic excitation.
The first step involves finding the Fourier series expansion of the excitation. This
Fourier series representation may be regarded as a series-connected sinusoidal
sources with each source having its own amplitude and frequency. The second step
is finding the response to each term in the Fourier series by the phasor techniques.
Finally, following the principle of superposition, we add all the individual responses.

Example 4.8

If the signal g(t) in Figure 4.4 (see Example 4.2) is the voltage source v,(t) in the
circuit of Figure 4.16. Find the response v,(t) of the circuit.

Solution
From Example 4.2,

v (t)=2.5+ Elein(nnt)

né&in
where

T=2

Wy=2n/T=mn

®, = No, = nx rad/s
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FIGURE 4.15 Convergence of the Fourier series representation of a square wave for several
values of N.
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40

1F Z=V,(0)

FIGURE 4.16 For Example 4.8.

Using phasors, we obtain the response V, in the circuit of Figure 4.16 by voltage
division, that is,

1/jw,C v 1 v Vv,

/= = = 4.8.1)
R+ (1jw,C) 1+ jo,RC ~ 1+ jdnm

where
R=4
C =1

For the dc component (w, =0 or n = 0),
V.=25=V,=25
This is expected since the capacitor is an open circuit to dc. For the nth harmonic,

V, = i40° (4.8.2)
nm

and the corresponding response is obtained from Equation 4.8.1 as

VO = ! [i ZO‘)j
V141601 Ztan™ ann\ nm
_ 5/(-tan™" 4nm)

= (4.8.3)
nmV1+16n*n?
In the time domain,
N 5 ‘ B
Vo(t) =2.5+ — e sin{nwt —tan" 4nm), (4.8.3)
; nmy/1+ 160’ ( )

Practice Problem 4.8 Let the signal in Figure 4.3 (see Practice Problem 4.1) be
applied to the circuit in Figure 4.17. Find the response v,(t).

o0 6 71
Answer: v, (1) = ————cos(nnt —tan" nm/3)
; V9 +n*n?
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3Q

.
V(o) C_) it %0

FIGURE 4.17 For Practice Problem 4.8.

4.6.2 SPECTRUM ANALYZERS

As we have observed, the Fourier series provides the spectrum of a signal. By pro-
viding the spectrum of a signal x(f), the Fourier series helps us identify which fre-
quencies are playing an important role in the shape of the output and which ones are
not. For example, audible sounds have significant components in the frequency range
of 20 Hz-15 kHz, while microwaves range from 2.4 to 300 GHz.

We regard a periodic signal as band-limited if its amplitude spectrum contains
only a finite number of coefficients A, or c¢,. For a band-limited signal, the Fourier
series becomes (truncated)

N

N
X(1)= Z ¢, e = g + Z A, cos(naot + ¢, ) 4.67)

n=—N n=l1

From this, we see that we need only 2N + 1 terms (namely, a,, A}, A,,...., Ay, Oy, $s,
..., &) to completely specify x(?) if ®, is known. This leads to the sampling theorem.

The sampling theorem states that a band-limited periodic signal whose
Fourier series contains N harmonics is uniquely specified by its values at
2N + 1 instants in one period.

A spectrum analyzer is an instrument that displays the frequency components
(spectra lines) of a signal. Spectrum analyzers are commercially available in various
sizes and shapes. Figure 4.18 illustrates a typical one. An oscilloscope shows the
signal in the time domain, while the spectrum analyzer shows the signal in the fre-
quency domain. Spectrum analyzer is perhaps the most useful instrument for circuit
analysis. It is widely used to measure the frequency response, noise and spurious
signal analysis, and more.

4.6.3 FiLTERS

Filters are frequency-selective devices used in electronics and communications sys-
tems. Here, we investigate how to design filters to select the fundamental component
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www.radaufunk.com

FIGURE 4.18 A spectrum analyzer. (From http://www.radaufunk.com/hp8569b.htm.)

(or any desired harmonic) of the input signal and reject other harmonics. This filter-
ing process cannot be accomplished without the Fourier series expansion of the input
signal.

A filter is a device designed to pass signals with desired frequencies and block
or attenuate others.

As shown in Figure 4.19, there are four types of filters:

1. A lowpass filter (LPF) passes low frequencies and rejects high frequencies.

2. A highpass filter (HPF) passes high frequencies and rejects low frequencies.

3. A bandpass filter (BPF) passes frequencies within a frequency band and
blocks or attenuates frequencies outside the band.

4. A bandstop filter (BSF) passes frequencies outside the frequency band and
stops or attenuates frequencies within the band.

For the purpose of illustration, we will consider two cases: a LPF and BPF.

A typical LPF is shown in Figure 4.20. The output of a LPF depends on the
input signal v,(f) (with fundamental frequency ®,), the transfer function H(®) of the
filter, and the corner or half-power frequency w, = 1/RC. The LPF characteristi-
cally passes the dc and low-frequency components, while blocking or attenuating the
high-frequency components. If we make o, sufficiently large (o, > ®,, e.g., making
C small), a large number of the harmonics can be passed. On the other hand, if we
make o sufficiently small (n, < ®,), we can block out all the ac components and
pass only dc.

A typical BPF is shown in Figure 4.21. The output of a BPF depends on the input
signal v,(f) (with fundamental frequency w,), the transfer function H(w) of the filter,
its bandwidth B, and its center frequency o,. The filter passes all the harmonics of
the input signal within a band of frequencies (o, < ® < ®,) centered around ®, and
rejects other harmonics.
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[H ()| [H ()|
HPF
LPF
1 1
= i >
0 ¢ 0 , ®
(@) (b)
|F(c)] |H(w)|
BPF BSF
! 1
wO W] W, Wy &) 0 0 @, @
—>
B

(© (d)

FIGURE 4.19 Ideal frequency response of four types of filters.

vi(t) <t> C ZZv,(2)

FIGURE 4.20 A typical lowpass filter.

vi(t) R< vy (1)

FIGURE 4.21 A typical bandpass filter.
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Example 4.9

If the signal in Figure 4.22a is applied to an ideal LPF with the transfer function
shown in Figure 4.22b, find the output.

Solution

The input signal in Figure 4.22a is the same as the signal in Figure 4.3 except for
the period is 2z instead of 2. Hence, w, = 2n/T = 1. From Practice Problem 4.1, we
know that the Fourier series expansion is (obtained by time scaling)

)

x(t) =-0.5+ Z isinnt

n=1 nm

n=odd

or

x(t) :—l+ésint+£sin3t+£sin5t+£sin7t+-~
2 n 3n 5n /T

Since the corner frequency of the filter is w. = 6 rad/s, only the dc component and
harmonics with nw, < 6 will be passed. Hence, the output of the filter is

y(t) = —l+95int+£sin3t+£sin5t
2 ¢ 3n 5n

Practice Problem 4.9 Rework Example 4.9 if the ideal LPF is replaced by the
ideal BPF whose transfer function is shown in Figure 4.23.

Answer: xy(t) = isin5t +isin7t+isin9t
5m 7m In

x(t)
1 |H]

—| A
> 1
-l Of 7w 2mn 3]‘[\: :l
-2 0 6 ®
() (b)
FIGURE 4.22 For Example 4.9.
|H]|
1
ol 4 10 )

FIGURE 4.23 For Practice Problem 4.9.
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4.7 COMPUTING WITH MATLAB®

Although MATLAB does not help in finding the Fourier series of a signal, it can
help in plotting line spectra and examining the convergence of a Fourier series. The
following examples show us how.

Example 4.10

Refer to the triangular wave in Figure 4.24. Take A = 10 and T = 2. Truncate the
series at n = N. Plot x(¢) for N = 3, 5, and 10.
Our goal is to examine the convergence of this Fourier series using MATLAB.

Solution
We can show that the Fourier series expansion of x(t) is

=A_AAN
2 n:1(2n-—1y

cos(2n — TNt

A =10 and o = 2n/T = =. If we truncate the series at n = N, then the finite sum
becomes

1
xn(t) =5—— cos(2n —Wrt
N nznﬂ(2n—02 §

The MATLAB script to compute and plot x(t) is shown next. Since the period is
T =2, we show x(t) for only 0 < t < 2.

N = input (‘Enter the highest harmonic desired’); %3, 5, 10
£=0:0.01:2;

xN = 5*ones(1,length(t)); % dc component

fac = -40/ (pi*pi);

for n=1:N

xN = xN + fac*cos( (2*n -1)*pi*t )/( (2*n-1)72);

end

plot (t, xN)

xlabel (‘t’)

ylabel (‘partial sum’)

-T 0 T 2T ¢t

FIGURE 4.24 For Example 4.10.
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FIGURE 4.25 For Example 4.12: (a) x,(?) for N = 3, (b) x,(t) for N =5.

The script was run for N = 3 and N = 5. The results for these two cases are shown
in Figure 4.25. There is a noticeable difference for the two cases. However, for
N =5 or greater, the result remains the same. We notice that the Fourier series
converges exactly to the signal. This confirms Fourier’s theorem, which requires
that x,(t) should converge to x(t) as N—co.

Practice Problem 4.10 Repeat Example 4.10 for the periodic square wave shown
in Figure 4.26. The Fourier series expansion is

0

x(t):ﬂz 11sin(2n—1)u)ot

b4 2n—
n=1

Take A=10and T=2.Try N=5 and N = 10.

Answer: See Figure 4.27.



206 Signals and Systems: A Primer with MATLAB®
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FIGURE 4.26 For Practice Problem 4.10.
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FIGURE 4.27 For Practice Problem 4.12: (a) x,(?) for N = 5, (b) x,(t) for N = 10.
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Example 4.11

In Example 4.3, we obtained the exponential Fourier series for f(t) = ¢, -1 <t < 1,
with f(t + 2n) = f(t) and n is an integer.

©

f(t) = Z(—U"Lefm", co = 0. @.11.1)

nm
n=—x
nz0

Use MATLAB to plot the line spectrum for the magnitude and the phase of x(0).

Solution

From Equation 4.11.1, we obtain

=02, nz0, c=0. 4.11.2)
nm

The following MATLAB script uses Equation 4.11.2. The stem plot is shown in
Figure 4.28.

clear

clc

n = -5:1:5;

cl = j*(-1)."n;
c2 = n*pi;

if n==

n = 0;

Q
o

else

cn=cl./c2;

end

mag = abs(cn) ;

phase = angle(cn)*180/pi; % converts angle in radians to degrees
subplot (2,1,1); stem(n,mag)

xlabel (‘n’); ylabel(‘|cn|’)

subplot (2,1,2); stem(n,phase)

xlabel ('n’); ylabel(‘\theta n’)

0.4

E 02}

°';'TTT | |

5 4 -3 2 -1 0 1 2 3
100 —
50 T

AL T T

-100
-5 -4 -3 -2 -1 0 1 2 3 4 5

s o

N

FIGURE 4.28 For Example 4.11.
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FIGURE 4.29 For Practice Problem 4.11.

Practice Problem 4.11
0 < t < T has the complex Fourier series

From Practice Problem 4.3, the periodic function y(t) = ¢,

: jnmt
— (1+ jnme
n’n

Answer: See Figure 4.29.

Use MATLAB to obtain the magnitude and phase line spectra for the signal (o).
4.8 SUMMARY

1. A periodic function x(f) repeats itself every period 7, that is, x( + T) = x(f).
series:

2. A periodic function x(f) can expressed in terms of sinusoids using Fourier

x(t)=ay+ E (a, cos nwyt + b, sin nwt)
— n=1
dc

ac

where o, =2n/T is the fundamental frequency. The Fourier series decomposes
the signal into the dc component a, and ac components.

There are three basic forms of Fourier series representation: the sine—cosine
form, the amplitude—phase form, and the exponential form.
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3. The Fourier coefficients of sine—cosine form are determined as
T
ay = 1 I x(t)dt
T
0
T
2
a, = —J.x(t)cos nwyt dt
T
0
T
2 .
b, = ?Ix(t) sin nwt dt
0

4. The amplitude—phase form of Fourier series is

x(1) = ag + ZAn cos(nwyt + ¢, )

n=1

where

A, =+a;+b:, O, :—tan_lﬂ

a,

5. The exponential (or complex) form of Fourier series is

x(t) = Z c, e’

n=—o

where
1 T
¢, =— | x()e "™ dr
_ ! (0

and w, =21/T.

6. For a Fourier series to converge, it must meet Dirichlet conditions, which
require that the signal x(f) must be integrable, have only a finite number
of minima and maxima, and have a finite number of discontinuities over a
period.

7. The line spectra (amplitude and phase) of x(7) is the plot of A, and ¢, or Ic,| and
0, versus frequency.
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8. Fourier series representation of a periodic function results in an overshoot
behavior at points of discontinuity due to partial summation. The overshoot is
about 9% of the peak-to-peak value. This is known as Gibbs phenomenon.

9. The average-power of periodic voltage and current is

1 ( 1 I ;
P= T-O[l x| dt =ag +E;(a2 +b,f) =a; +E;A3 = nz;o| c, [

This result is known as Parseval’s theorem. It states that the average power in
a periodic signal is the sum of the average power in its dc component and the
average of the powers in its harmonics.

10. In this chapter, Fourier series is applied to circuit analysis, spectrum analyzers,
and filters.

11. Fourier series expansion allows us to use the phasor method in analyzing cir-
cuits with nonsinusoidal periodic source signal. We apply the phasor technique
to determine the response due to each harmonic in the series, transform the
responses to the time domain, and add them together.

12. Using MATLAB, we can plot the Fourier series and the line spectra for both
magnitude and phase.

REVIEW QUESTIONS
41 Ifx@t)=2t,0<t<m x(t+T)=x(t+n) =x(), the value of o, is
@ 1,2, @©md2r
4.2 Which of the following signals are even?
(@) % cost, (b) 2 In(?), (¢) exp(t?), (d) 2 + t*, () sinh ¢
4.3 Which of the following signals are odd?
(@) sin ¢, (b) tsin ¢, () exp(®), (d) £ cos t, (e) sinh 7
4.4 If x(r) = 8cos 100z + 4cos 200t + 2cos 300t + cos 400¢ +---, the signal is:
(@) Odd, (b) even, (c) half-wave symmetric, (d) quarter-wave symmetric
4.5 Since cos 7 is an even function, cos ¢ + cos (—f) is
(@ 2cost, (b) 0.5cos ¢, (¢) 2sin ¢, (d) 0.5sin 2t
4.6 If x(t) = 12 + 8cost + 4cos3t + 2cos5t +--, the magnitude of the dc component is:
@ 12,(b) 8, (©) 4, (d) 2, (0.
4.7 If x(t) = 12 + 8cost + 4cos3t + 2cos5t +--, the frequency of the sixth harmonic is
@ 12,(b) 11,(©)9,(d) 6
4.8 If x(r) = 10 + 4 cost + 2cos3t, the power in the signal is
(@ 164, (b) 120, (c) 110, d) 16
4.9 A Fourier cosine series is one that involves only cosine terms.
(@) True, (b) False
4.10 The plot of 6, versus nw, is called

(a) Complex frequency spectrum, (b) Complex phase spectrum, (c) Complex
amplitude spectrum

Answers: 4.1b; 4.2a,d; 4.3a,d,e; 4.4b; 4.5a; 4.6a; 4.7b; 4.8c; 4.9a; 4.10b.
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PROBLEMS

SECTION 4.2—TRIGONOMETRIC FOURIER SERIES

4.1 Find the trigonometric Fourier series for

5, O<t<m
x()=
10, =w<t<2nm

x(t+2m) = x(t).

4.2 Determine the sine—cosine Fourier series for the periodic signal in Figure 4.30.
4.3 A periodic signal is given by

4 o[ nm
1) = E — — 400nmt
x(1) nZInsm [2Jcos( nmt)

(@) Compute the period T and the fundamental frequency ,,.
(b) Identify the Fourier series coefficients a, and b,.
4.4 Obtain the Fourier series expansion for the signal shown in Figure 4.31.

FIGURE 4.30 For Problem 4.2.

.4

-2 -7 0 = 2n 3n 4n

FIGURE 4.31 For Problem 4.4.
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FIGURE 4.32 For Problem 4.7.

x(t)

10

/N /\

-4 -3 -2-10 1 2 3 4 5 6

FIGURE 4.33 For Problem 4.8.

4.5 Plot the amplitude and phase spectra for the signal
x(1) =8cos(100mz —0.2) +6¢c0s(200ms —1.2) — 4cos(3007r)

4.6 Show that

Acoswt + Bsinot =vA* + B cos(wt —tan™' ij

4.7 Determine the Fourier series of the periodic function in Figure 4.32.
4.8 Expand x(f) in Figure 4.33 in Fourier series.

SECTION 4.3—EXPONENTIAL FOURIER SERIES

4.9 Obtain the exponential Fourier series coefficients for
x(t) =sin*(2nt)

4.10 Express the sawtooth waveform x(7) in Figure 4.34 as a complex Fourier series.
4.11 Determine the exponential Fourier series coefficients of the signal in Figure 4.35.
4.12 Determine the exponential Fourier series for the impulse train in Figure 4.36.
4.13 The complex exponential Fourier series of a signal x(f) over 0 < r < T'is
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x(t)

A 4

FIGURE 4.34 For Problem 4.10.

FIGURE 4.35 For Problem 4.11.

x(t)

RREAN

2mn-m 0 m 2m 3

=
S 4

FIGURE 4.36 For Problem 4.12.

x(t) = Z j sin(’?jemm/so

(a) Calculate T.
(b) Determine the average value of x(¢).
(c) Find the amplitude of the third harmonic.
4.14 The complex exponential Fourier series of a signal is given as



214 Signals and Systems: A Primer with MATLAB®

x()=Q2— e + jde " +5— jhe™ + 2+ j)e'

Sketch the amplitude and phase spectra.
4.15 A periodic signal is expressed as

0

()= e

where
co=04
c=c =02
¢, =c,=0.12
c;=c3=0.08

(@) Determine the period 7 and the fundamental frequency ,,.
(b) Write out x(¢) in exponential form and use Euler relation to express x(f) in
cosine form.
4.16 Suppose x(f) = 1 + cos2t + 0.5cos4z. Find the Fourier series coefficients of the
exponential form of x(7).
4.17 Find the exponential Fourier series for the waveform in Figure 4.37.
4.18 Determine the complex Fourier series if x(f) = 10cos3z.

SECTION 4.4—PROPERTIES OF FOURIER SERIES

4.19 A periodic signal is given by

o0
x(t) = Z c,e’"
n=—0o

where
0, =2n/T
T is the period

Determine the Fourier coefficients in terms of ¢, for y(f), where

FIGURE 4.37 For Problem 4.17.
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@ y(0)=x(=0)
(b) y(1) =x(20)
© ¥y =x(=3)

_ dx(®)
@ y==

4.20 If ¢, is the exponential Fourier series with coefficients of a periodic signal x(7).
Determine the coefficients of the following:
@ y(@ =xQn)
(b) z(® =x(=30
© h@®=1+x2p
4.21 Let w(f) = x(t)y(?). Show that if x(¢) is even and y(7) is odd, w(f) is odd.
4.22 Let x(r) and y(f) be periodic signals with the same period 7 such that

=D 6™, y)= ) de™

where o, = 2n/T. Show that the signal z(f) = x(¢)y(?) is periodic with the same
period 7" and can be expressed as

() = Z e,e’"™
where ¢, = Z Cnlyy_
4.23 Consider the signals shown in Figure 4.38. Which of them have
(@) Even symmetry?
(b) Odd symmetry?
(c) Half-wave odd symmetry?

x(2)

FIGURE 4.38 For Problems 4.23 and 4.24. (Continued)
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FIGURE 4.38 (Continued) For Problems 4.23 and 4.24.
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4.24 Without evaluating any Fourier series coefficients, state which of the signals in
Figure 4.38 contain
(@) A dc component
(b) Only odd harmonics
(c) Both sine and cosine terms
4.25 Given the exponential Fourier series of a periodic signal as

x(t) = Z c, e’

n=—w

Show that

0

T
_1 2 _ 2
P_T!u(m dr=>lc,|

n=-—w

4.26 The first half cycle of a periodic signal is shown in Figure 4.39. Sketch the
signal over —7/2<t<7T/2 for each of these cases:
(@ y(» is even
(b) y(® is odd

4.27 Find the average power dissipated in a 2€ resistor when the applied current is

i(t)=8coswt—6¢cos3wt +3cosSwr A

4.28 The amplitude and phase spectra of a truncated Fourier series are shown in
Figure 4.40.
(@) Find an expression for the periodic voltage using amplitude-phase form.
(b) Is the voltage odd or even function of ¢?

4.29 The exponential Fourier coefficients of the signal in Figure 4.41a is

.2
Asin (n1t2/2) 00

c, = (nm/2)
0 n=0

Find the coefficients for the signal in Figure 4.41b.

y(2) 4

~V

0| T/4 T/2

FIGURE 4.39 For Problem 4.26.
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0 20, 6w, no,
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FIGURE 4.40 For Problem 4.28.
x()
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-T/2 0 T/2 T
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FIGURE 4.41 For Problem 4.29.
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SECTION 4.6—APPLICATIONS

4.30 Let the input voltage x(7) to the circuit in Figure 4.42 be

x(t) =1+ 4(cost +c082¢ + cos3t + cos4t).

Determine the output voltage y(?).

4.31 The periodic current waveform in Figure 4.43 is applied across a 2 kQ resistor.
Find the percentage of the total average power dissipation caused by the dc
component.

4.32 If the periodic current waveform in Figure 4.44a is applied to the circuit in
Figure 4.43Db, find v,,.

4.33 Find the response i,(f) for the circuit in Figure 4.45a, where v (f) is shown in
Figure 4.45b.

SecTiON 4.7—CoMPUTING WITH MATLAB®

4.34 Using MATLAB, write a program to compute and plot the partial sum of the
sawtooth waveform in Figure 4.4.

4.35 Use MATLAB to plot
(@ x(r) =10+ 6cos2nt + 4cosdnt 0<t<?2

5 n
(b) y()= (_11)) sin(”zm], -1/2<t<1/2

n=-5

2Q

@

FIGURE 4.42 For Problem 4.30.

FIGURE 4.43 For Problem 4.31.
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FIGURE 4.44 For Problem 4.32.
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FIGURE 4.45 For Problem 4.33.

4.36 The Fourier series of a signal is

X(1)= % + Z%sm(znm)

n=1

Use MATLAB to plot the partial sum x,(f) for N=5and N=9.
4.37 Use MATLAB to plot the Fourier series expansion

x(t) = 2 sint —isin3t +isin5t —isin7t
o 9 25 49

4.38 The exponential Fourier series coefficient of a signal is

Cp=— ! (cosnm—1)

j2nm

Using MATLAB, plot the magnitude and phase spectra. Take -5 <n < 5.
4.39 Repeat the previous problem for

_J10/
cn—ﬁ(( D 1)



5 Fourier Transform

Nothing in the world is difficult for one who sets his mind to do it.

—Chinese saying

CAREER IN CONTROL SYSTEMS

A welding robot. (Courtesy of Shela Terry, Science Photo Library, London, UK)

Control systems are an area of electrical engineering where signals and systems
are used. A control system is designed to regulate the behavior of one or more vari-
ables in some desired manner. Control systems play major roles in our everyday life.
Household appliances such as heating and air-conditioning systems, switch-con-
trolled thermostats, washers and dryers, cruise control in automobiles, elevators, traf-
fic lights, manufacturing plants, navigation systems—all utilize control systems. In
the aerospace field, precision guidance of space probes, the wide range of operational
modes of the space shuttle, and the ability to maneuver space vehicles remotely from
earth all require knowledge of control systems. In the manufacturing sector, repetitive
production line operations are increasingly performed by robots, which are program-
mable control systems designed to operate for many hours without fatigue.

Control engineering applies signals and systems theory. It is not limited to any
specific engineering discipline but may involve environmental, chemical, aeronau-
tical, mechanical, civil, and electrical engineering. For example, a typical task for a

221
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control engineer might be to design a speed regulator for a disk drive head. A thor-
ough understanding of control systems techniques is essential to the electrical engi-
neer and is of great value for designing control systems to perform the desired task.

5.1 INTRODUCTION

In Chapter 4, we saw that Fourier series enabled us to represent a periodic signal as a lin-
ear combination of infinite sinusoids. The Fourier series expansion reveals the frequency
content of the periodic signal. It is also possible to analyze the frequency content of non-
periodic signals. The tool that enables us to do this is the Fourier transform (also known
as Fourier integral). The transform assumes that a nonperiodic (or aperiodic) signal is a
periodic signal with an infinite period. The Fourier transform is important in analyzing
and processing signals in science and engineering, especially in medical images, com-
puterized axis tomography (CAT), and magnetic resonance imaging (MRI).

The Fourier transform is similar to Laplace transform. Both are integral trans-
forms. The Fourier transform may be regarded a special case of Laplace transform
with s = jo, when the Laplace transform exists. Just like the bilateral Laplace trans-
form, Fourier transform can deal with systems having inputs for # < 0 as well as those
for ¢ >0. Fourier transform is very useful in linear systems, filtering, communication
systems, and digital signal processing, in situations where Laplace transform does
not exist.

The chapter begins by defining the Fourier transform from Fourier series. Then
we present and prove the properties of Fourier transform, which are useful in deriv-
ing Fourier transform pairs. We discuss Parseval’s theorem, compare the Laplace
and Fourier transforms, and see how the Fourier transform is applied in circuit anal-
ysis, amplitude modulation, and sampling. We finally learn how to use MATLAB®
in Fourier analysis.

5.2 DEFINITION OF THE FOURIER TRANSFORM

There is a close connection between the definition of Fourier series and the Fourier
transform for functions x(7) that are zero outside of an interval. For such a function,
we can calculate its Fourier series on any interval that includes the points where x(f)
is not identically zero. The Fourier transform is also defined for such a function. As
we increase the length of the interval on which we calculate the Fourier series, the
Fourier series coefficients begin to look like the Fourier transform and the sum of the
Fourier series of x(f) begins to look like the inverse Fourier transform. To explain this
more precisely, suppose 7'is large enough so that the interval [-7/2, T/2] contains the
interval on which x is not identically zero.

Recall that if x(7) is a periodic function with period 7, then we can expand it in a
complex Fourier Series,

©

x(t) = che-f"mof G.0)

n=—o
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where

x(0)e™ " dy

L

1
Cp =
T

(5.2)

S

The spacing between adjacent harmonics is

2n

Am:(n+1)030 —nwy =Wy = T

5.3)

We substitute Equation 5.2 into Equation 5.1 and putting 1 = % we obtain
T

T
3
_ [ () ar jawer (5:4)

In view of the previous discussion, as 7 — oo, we can put ®, as A® and replace the sum
over the discrete frequencies nw, by an integral over all frequencies. We replace nw,
by a general frequency variable . We then obtain the double integral representation:

X(t)zzln J' J.x(t)efju” dt €jmt do (55)

The inner integral is known as the Fourier transform of x(f) and is represented by
X(w), that is,

(5.6)

where F is the Fourier transform operator.

The Fourier transform of a signal x(?) is the integration of the product of x(f)
and e~ over the interval from —co to +oco.
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X(w) is an integral transformation of x(#) from the time-domain to the frequency-
domain and is generally a complex function. X(w) is known as the spectrum of x(7).
The plot of its magnitude |X(w)l versus w is called the amplitude spectrum, while that
of its phase £ X(w) versus o is called the phase spectrum. If a signal is real-valued, its
magnitude spectrum is even, that is, IX(w)l = IX(-w)| and its phase spectrum is odd,
that is, ZX(w) = —«X(—w). Both the amplitude and phase spectra provide the physical
interpretation of the Fourier transform.

We can write Equation 5.5 in terms of X(w) and we obtain the inverse Fourier
transform as

(1) = F{X(0)] =21 [x(@)e™ do &)

We say that the signal x(7) and its transform X(») form a Fourier transform pair and
denote their relationship by

x(t) & X(o) 5.8

We will denote signals by lowercase letters and their transforms by uppercase letters.

Not all functions have Fourier transforms. The necessary conditions required for
a function to be transformable are called the Dirichlet conditions similar to the
Fourier series. These are listed as:

1. x(?) is bounded.

2. x(t) has a finite number of maxima and minima within any finite interval.

3. x(f) has a finite number of discontinuities within any finite interval.
Furthermore, each of these discontinuities must be finite.

4. x(t) is absolutely integrable, that is,

©

j\x(z)\ dt <o 5.9)

—©

Therefore, absolutely integrable signals that are continuous or that have a finite num-
ber of discontinuities have Fourier transforms.

Example 5.1

Find the Fourier transform of the following functions: @)8(1), (b) e/, (c) sinwt,
(d) e=2tu(t).

Solution
(@ For the impulse function,

X() = FI50)] = I S(t)e ' dt = eI

—0

=1 (5.1.70)
t=0
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where the sifting property of the impulse function in Equation 1.21 has been
applied. Thus,

Flsn)]=1 (5.1.2)

This shows that the magnitude of the spectrum of the impulse function
is constant; that is, all frequencies are equally represented in the impulse
function.

From Equation 5.1.2,

3(t) = F 1]

Using the inverse Fourier transform formula in Equation 5.7,

8) = F M = - j e de
21 E

or

I e'do = 218(t) (5.1.3)

—0

Interchanging variables t and  results in

J' ePldt = 2nd(w) (5.1.4)

—0

Using this result, the Fourier transform of given function is

Fle™]= T efte I dt :]i et = 28(ey — )
Since the impulse function is an even function, §(w,—®) = d(@—w,),
Fle™™"] = 2nd(w — ) (5.1.5)
By simply changing the sign of w,, we readily obtain
Fle 7™ = 2n8(w + ) (5.1.6)
Also, by setting o, = 0,

F1] = 2n3(w) (5.1.7)
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(c) By using the result in Equations 5.1.5 and 5.1.6, we get

joot — jwot
Flsinmgt] = f{w}
2j
- i}"[e/‘”ﬂ _i]_—[eqmgr]
2j 2j
= ju[3(0+w)-8(0—w)] (5.1.8)
—at
(d) Let x(t) = e ult) —{e ;>0
0, t<0

X((D) = I X(t)eflwtdt _ je—ate—jwldt — J.e—(aJrjw)tdt
B ’ ° (5.1.9)
-at -1 —(a+jo)t - 1
f[e u(t)J—Xm: et '
atjo , atjo

Practice Problem 5.1 Determine the Fourier transform of the following func-
tions: (a) the rectangular pulse TI(t/7), (b) 8(t + 3), (c) 2cosw,t.

Answer: (a) gsin(%T = rsinc%, (b) €32, (c) 2x[d(® + W) + Slo—w,)]
)

Example 5.2

Obtain the Fourier transform of the signal shown in Figure 5.1.

Solution

-1

® 0 ;
X((,O) = J.X(t)e*/ﬂlldt — .[(_A)e*/wtdt +J.Ae—jwldt
— 0

1
0

A
jo

_A
-1 jo

— efj(ut ef/'w[

—jA o
=——(1-e - +1
- )
:H(cosm—v

)
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-A

FIGURE 5.1 For Example 5.2.
Practice Problem 5.2 Derive the Fourier transform of the triangular pulse
defined as

[t]
1-—, ltl<
At/ =1 = '

0, ltl>1

) ot
Answer: Tsinc? [7]

Example 5.3
Find the Fourier transform of the two-sided exponential pulse shown in Figure 5.2.
Sketch the transform.

Solution

Let x(t) = e = {

at

e”, t<O0

e, t>0

FIGURE 5.2 For Example 5.3.
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1/a

5 4

FIGURE 5.3 Fourier transform of x(7) in Figure 5.2.

The Fourier transform is
0 0 ©
X() = J' x(be 't = J' e Pl + J.e’a‘e'/‘”tdt
—0 —0 0
1 1
- . + .
a-jo a+jo
_ 2a
a’+ o’

X(w) is real in this case and it is sketched in Figure 5.3.

Practice Problem 5.3 Determine the Fourier transform of the signum function in

. . 1, t>0
Figure 5.4, that is, x(t) =sgn(t) = {_1, r<o’ Sketch |X(w)|.

2
Answer: ——. See Figure 5.5.
jo

sgn(z)

-1

FIGURE 5.4 The signum function of Practice Problem 5.3.
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15 4

FIGURE 5.5 Fourier transform of the signal in Figure 5.4.

5.3 PROPERTIES OF FOURIER TRANSFORM

The properties of the Fourier transform are summarized as follows. These proper-
ties have important interpretations and meanings in the context of signals and signal
processing. The properties of the Fourier transform provides valuable insight into
how signals operating in the time-domain are described in the frequency-domain.
Many properties like linearity, time scaling and shifting, frequency shifting, time
differentiation and integration, frequency differentiation, duality, convolution, and
Parseval’s Theorem are discussed as follows.

5.3.1 LINEARITY

The Fourier transform is a linear transform. That is, suppose we have two functions
x,(H and x,(f), with Fourier transform given by X,(®) and X,(»), respectively, then the
Fourier transform of x,(f) and x,(f) can be easily found as

.7-"|:a1x|(t)+azx2 (1)]=alxl((’))+azxz((’0) (5.10)

where a, and a, are constants (real or complex numbers). Equation 5.10 can be easily
shown to be true via using the definition of the Fourier transform

F [alxl (t)+ arx, (t)]: ]'i [a\x, (t) +a,x, (t)]e"j‘”’dt

—0

= J. ax (t)e_j"”dt + J. ax, (t)e_j"”dt

—0

=a,X,(0)+a:X, () (5.11)

This can be extended to a linear combination of an arbitrary number of signals.
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5.3.2 TIME SCALING

The scaling property of the Fourier transformation is as follows. If F (0)) = [x(t)}
and a is a real constant. Then

F[x(ar)] =1X(‘”j (5.12)

resulting in a new frequency w/a. Equation 5.12 can be found using the definition

F[x(at)} = T x(at)e‘j‘”’ dt

Letting A = at, d\ = adt so that

}'[x(at)JZTx(}”)e e ((’)j (5.13)

Now if a is positive, (a > 0),
T 21 (o) 1 (o
f[x(at)]-jx(?»)e D ax(aj_ax(aj

If a is negative (a > 0),

f[x(at)]z]lx(k)ejw“xdkz—jix(%)e 0 d}' IX[CO)

a a —a a

—o0 —0

b

Rz
Therefore, we can see that for the general case of scaling with a real number a we get
Equation 5.12. The scaling property is sometimes also called the reciprocal spread-

ing property.
5.3.3 TiME SHIFTING

Another simple property of the Fourier transform is the time shifting. If
X(w) = f[x(t)} and 7, is a constant, then

Fla(i-1)]=e 7 X (w) (5.14)
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If the original function x(¢) is shifted in time by a constant amount, it should have the

same magnitude of the spectrum, X(m). That is, a time delay does not cause the fre-

quency content of X(®) to change at all. Since the complex exponential always has a

magnitude of 1, we see that time delay alters the phase of X(w) but not its magnitude.
By definition,

f[x(t—toﬂ = T [x(t—tO)J e dt (5.15)

Letting A =t —1,, d. =dt, and t = A + 1, so that
f[x(t —to)] = j x(k)eijm(x”‘))d?»: e fon I x(?»)e’-"“’x dh=e~700 X((o)

By following similar steps,

Flx(t+1)]=e" X (o) (5.16)

5.3.4 FREQUENCY SHIFTING

This property forms a basis for every radio and TV transmitter. This property states
that if X(m) = ]—"[x(t)] and o, is constant, then

Fx(1)e™ [=X (0- o) (5.17)

Note that this is a dual of the time shifting property. The previous equation means
that a shifting in the frequency-domain is equivalent to a phase shift in the time-
domain. By definition,

]:[x(t)ej‘”‘”] = j‘ x(t)ej‘”"’e’j“”dt

= I x(t)e ™ dr = X (0—ay) (5.18)
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5.3.5 TiME DIFFERENTIATION

If X ((o) =F [x(t)], then the Fourier transform of the derivative of x(¢) is given by

}'[x'(t)] = j(oX(a))

(5.19)

This states that the transform of the derivative of x(f) is obtained by multiplying its

transform X(w) by jo. By definition,
x(1)=F[X(0)] =5 [X(0)" do
T

Taking the derivative of both sides with respect to ¢ gives

©

fdif(:):éj:.[x(@)ejmdw:i@I[X(‘”)]

}‘[x’(t)] = joX(o)

The nth derivative of the Equation 5.19 is
}'[x(") (t)} = (jco)n X(o)

5.3.6 FREQUENCY DIFFERENTIATION

This property states that if X((u) = ]-'[x(t)] then

By definition,

x(t)e’jw’ dt} = J. x(t)dd—nne’j“” dt

(0]

—0

= F(=jn)" x(1))

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)
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5.3.7 TiME INTEGRATION

If X (w) =F [x(t)] then, the integration of function x() is given by

t

F Jx(t)dt :@m)((o)s(m) (5.25)

Jo

—0

Integrating x() in the time-domain leads to division of X(w) by jo plus an additive
term 1X(0)5(w) to account for the possibility of the dc component that may appear in
the integral of x(¢). If we replace » by 0 in Equation 5.6

X(0) :Tx(t)dt (5.26)

indicating that the dc component is zero when the integral of x(f) over all time
vanishes.

5.3.8 DuaALity

Duality between the time and frequency domains is another important property of
Fourier transforms. This property relates to the fact that the analysis equation and syn-
thesis equation look almost identical except for a factor of 1/2x and the difference of
a minus sign in the exponential in the integral. The duality property states that if X(o)
is the Fourier transform of x(z), then the Fourier transform of X(7) is 2nx(—w); that is,

Fx(1)]=X(0)= F[ X(1) | = 2nx(-w) (5.27)

This expresses the fact that the Fourier transform pairs are symmetric. To derive the
property, from Equation 5.7

x(1)=F"[ X(0)] =21—7t j X (o)™ do (5.28)
2mx (1) = TX(m)ej"”dw (5.29)

Replacing ¢ with —#, in Equation 5.29, we obtain

2mx(—t) = I X(0)e ™ do (5.30)
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By interchanging # and o, and comparing the result with the Equation 5.28

2mx(~o) = T X(t)e 7 dr = F[ X(r)] (5.31)

5.3.9 CoONVOLUTION

According to the convolution property, the Fourier transform of the convolution of
two time functions is the product of their corresponding Fourier transforms. If x(r)
and A(f) are two signals, their convolution y(?) is given by the convolution integral

¥(£)=h(e)*x(r) = ]:h('c)x(t—t)d'c (5:32)

If X(0), H(), and Y(w) are the Fourier transforms of x(f), h(f), and y(¢) respectively, then

¥ (@) = FLh(t)* x()] = H(@)X(0)| (5.33)

which states that the Fourier transform of the convolution of two-time functions is
the product of their corresponding Fourier transforms.

To derive the convolution property, we take the Fourier transform on both sides
of Equation 5.32 we get

0 ©

¥(0)=[| [ n(e)x(r=r)ac | 534
Y((o):]ih(r) ]ix(t—r)ej‘”’dt dt

By taking A=t — T so that r = A + T and dt = d\.

© ©

Y(0)= [n(x)| [x(r)e 0 an|dn
Y(0)= T h(t)e " dt T x(X)e ™ dh=H(w)X () (5.35)

Table 5.1 presents these and other properties of Fourier transform, while Table 5.2
lists the transform pairs of some common functions. Note the similarities between
these tables on Fourier transform and Tables 3.1 and 3.2 on Laplace transform.



Fourier Transform

x(t)

axy(1) + ax,(1)
x(at)

x(t—a)

'™ x(t)

cos(wy)x(t)

sin(wot)x(t)

dx

dt

d"x
dt"

(=jty'x(0)

1

j x(t)dt

x(—1)
X(1)
x(D* x5(1)

X, (D)x5(1)

TABLE 5.1

Properties of the Fourier Transform
No. Property

1. Linearity

2. Scaling

3. Time shift

4 Frequency shift

5. Modulation

6. Time differentiation

7. Frequency differentiation
8. Time integration

9. Time reversal

10. Duality

11. Time convolution

12. Frequency convolution
13. Parseval’s relation

j|x(t) [ dr

X(®)
a; X (o) + a,Xy(w)

)

e X(w)
X(w—awy)

%[X(coJroao)JrX(wfwo)]

%[X(m+m0)—X(m—mU)]

joX(©)

(jo)X(w)

o
=X
1o (w)

XO) | X 0)8(0)
JO)

X(-m) or X*(®)
21x(—)
X (0)X5(w)

L ¥ %)
2

o [1xr do
2r
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Example 5.4

A signal x(t) has a Fourier transform given by

Xlo) = ——"——
@ 8-’ +6jo

501+ joo)

Without finding x(t), find the Fourier transform of the following:
(@ x(t-3)

PRGN

b) x(4t)
c) e 2x(t)
d) x(=2t)
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TABLE 5.2
Fourier Transform Pairs
No. x(t) X(w)
1. o(1) 1
2. 1 218(w)
1
3. u(r) md(w) +—
jo
4. u(t+7) —ult—1) 5 sin®t
®
5 It =2
032
6. sgn(?) il
jo
7. e~u(?) 1
a+ jo
8. emu(—p) 1
a—jo
9. e~ u(t) n!
(a + j(x))””
10. el 2a
a*+ o’
1. Ide-au(r) 4ajo
a*+ o’
12. oot 27d(m—w)
13. sinwyt J[S(® + wy)—d(w—w)]
14. cosW,t 7[(0 + ©y)+3(0—0,)]
15. (sinwgt)u(r) ove
16, (coswghu(t) B+ ) — 80— 0y)] + — T
w5 —
17. sin(oy +0) jale—i08(w + 0)—ej0d(@—a,)]
18. cos(myt + 0) n[e—jBd(® + my) + €j03(w—wm,)]
19. e~'sinw, tu(t) ®o

(a+ jo)* + oy

20. e~'cosm, tu(t) a+ jo
(a+ jo)* + oy

(Continued)
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TABLE 5.2 (Continued)
Fourier Transform Pairs

No. x(O X(®)

21, () rsinc(%j

2. A[ ’j Tsinc? (“’—T)
T 2

23. i&(r—nT) moié(w—nwo)

n=-o0 n=—o0

Solution

We apply the relevant property for each case:

o 501+ jo)e™
_ —e /o3y A LD e
@ Flxt-3)=e""X(w) B0+ 60
> 1+ jo/ 4)
1 (o) 4 54+ jo)
by Flxavl= 4X(4j 8- 16+ j60/4  128—0* + 240

© Flex0l- Yo+ —— LSO+ D]  Sitjerjd)
8—(@+2) +6jlw+2) 4-o -4o+6jo+ )12

5
2(1- jo/2) :
o 1 (o) 2 52— jo)
@ FI 2”]_2)([—2]_ _ o' 6jo  32-0'-12jo
4 2

Practice Problem 5.4 A signal x(9) has the Fourier transform

9
9+ w

X(w)

Find the Fourier transform of the following signals:

@ y=xQt-1)
(b) z(t) = dx(20/dt

18/ b 18

Answer: (a) , , _
36+ o’ 36 + o’ jol9+@?)
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x(t)“

v

-3 -2 -1 0 1 2 3 t

FIGURE 5.6 For Example 5.5.

Example 5.5

Determine the Fourier transform of the signal in Figure 5.6.

Solution

Although the Fourier transform of x(t) can be found directly using Equation 5.6, it
is much easier to find it using the derivative property. Taking the first derivative of
x(t) produces the signal in Figure 5.7a. Taking the second derivative gives us the
signal in Figure 5.7b. From this,

x"(t) = 438(t + 3) — 63(t + 2) + 63(t — 2) — 458(t — 3)

x'(t)A

v
~

2
(a)
63(t—2)
x"(t)‘
43(t+3)
352 -1 0o 1 2 3 4
~43(2-3)
~65(t+2)
(b)

FIGURE 5.7 For Example 5.5: (a) first derivative of x(¢), (b) second derivative of x(z).
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> =

FIGURE 5.8 For Practice Problem 5.5.

Taking the Fourier transform of each term, we obtain

(jw)* X(w) = 4e”** —6e/*” + 6e™/>® — 47 1°°
-0’ X(0) = 4 (e”“’ - e”g"’) + 6(e/2°’ - e”zm)

= j8sin3w—j12sin2w

X(@) = 2 (12sin 20 - 8sin30)
[O)

Practice Problem 5.5 Determine the Fourier transform of the function in Figure 5.8.
_J1o

Answer: Y(w) 5 (sin20—2sinw)
®

5.4 INVERSE FOURIER TRANSFORM

In general, we would use Equation 5.7 to find the inverse Fourier transform x(#) of
X(w). Quite often, the Fourier transform is in the form of a rational function. In this
case, we perform a partial fraction expansion of X(w) and finding the corresponding
time-domain signals using the Fourier transform pairs in Table 5.2. The procedure is
similar to what we did in Section 3.4 for Laplace transform.

Example 5.6

Find the inverse Fourier transform of

(@ Glo) = %
(—jo+2)(jo+3)
b Yiw)=— @

(jo+N(jo+2)
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Solution
(@) To avoid complex algebra, let s = jw. Using partial fraction,
10s -10s A B

=2 Ere) T (-2)(s3) 52 sz TR

o _ 102
A= 2)(;(5)5:2_ 243
B=(s+3Gl) =0 _ ¢

B s=-3 -3-2

Glo)=—2 -0
jo-2 jo+3

Taking the inverse Fourier transform of each term,
g(t) =—4e’u(-t)—6eu(t)
(b) Because of the delta function, we use Equation 5.7 to find the inverse.

1 ‘T §(w)edo 1 e/ 111
(2+jo)(jo+1) 21 (2+jo)(jo+1)j0=0 2n2 4n

(=

—0

where the sifting property has been applied.

Practice Problem 5.6 Obtain the inverse Fourier transform of

—j2m
@ Flo)=
1+ jo
B 7d(w)
b Clo)= G+ jo)2+ jo)

Answer: (@) f(t) = e~2u(t=2), (b) g(©) = 0.05

5.5 APPLICATIONS

The Fourier transform is used extensively in a variety of fields such as optics, spec-
troscopy, acoustics, computer science, and electrical engineering. In electrical
engineering, it is applied in circuit analysis, communications systems, and signal
processing. Here we consider three application areas: circuit analysis, amplitude
modulation (AM), and sampling. Filtering is another area of application, but we have
already considered this in Section 4.6.3.
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5.5.1 Circuit ANALYSIS

We use Fourier transform to analyze circuits with nonsinusoidal excitations exactly
in the same way we use phasor techniques to analyze circuits with sinusoidal excita-
tions. For example, Ohm’s law is written as

V(o)=Z(o)I(o) (5.36)

where
V(w) and /(o) are the Fourier transforms of the voltage and current respectively
Z(w) is the impedance

The impedances of resistors, inductors, and capacitors are the same as in phasor
analysis, that is,

R=R
L= joL (5.37)

joC

The Fourier approach to circuit analysis generalizes the phasor technique. It
involves three steps. First, we transform the circuit elements into frequency-domain
as in Equation 5.57 and take the Fourier transform of the excitations. Second, we
apply circuit techniques such as Kirchhoff’s voltage law, Kirchhoff’s current law,
voltage division, current division, source transformation, node or mesh analysis to
find the unknown response (current or voltage). Third, we finally take the inverse
Fourier transform to get the response in the time-domain. (We should note that
Fourier analysis cannot handle circuits with initial conditions.)

As usual, the transfer function H(w) is the ratio of the output response Y(w) to the
input excitation X(w):

_Y(o)
H(w)= X(o) (5.38)
or
Y(0)= H®)X(®) (.39

Equation 5.39 states that if we know the transfer function H(w) and the input X(w),
we can find the output Y(w).
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Example 5.7

Determine v, (1) in the circuit of Figure 5.9, where i; = 10e=tu()A.

Solution

O.SF%#Z;:.A/

joC  jo0.5 jo
ii=10e™ > I, = 10,
2+ jo

Using current division, the current through the capacitor is

2 jo 10
lo: 2 I5: - .
242 1+ jo 2+ jo
jo
VO:ID£= 20 _ 20 5= jo

jo  (+jo)2+jo) (s+)(s+2)’

o AL B [ 1
s+1 s+2 s+1 s+2

Taking the inverse Fourier transform produces
Vo) = 20(e™ —e™)ult) V

Practice Problem 5.7  Find /() in the circuit of Figure 5.10. Let v,(t) = 4e~2u(0).

Answer: i(t) = 4(e%5—e Yu(t) A

20 i 05F Yo

FIGURE 5.9 For Example 5.7.
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FIGURE 5.10 For Practice Problem 5.7.

5 L i(t)

Vs(t) 1H

(a) (b)

FIGURE 5.11 For Example 5.8.

Example 5.8

Given the circuit in Figure 5.11, with its excitation, determine the Fourier transform

of i(p).

Solution
One easy way to find the Fourier transform of v, is to first find its derivative.

v (t) = 83(t) - 83(t — 1)
Taking the Fourier transform of each side,

joV, =8(1-e7) >V, = ,i(1—e*f‘°)
J)

The current /(o) is obtained as

V, 8(1—e™®)
I(w) = - == -
3+ jol  joB3+ jo)

8 .
L - = — _ yiol
et X(o) = o3+ jo) ,so that /() = X((D)(1 e )
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4.Q
VA VAN
vi(t) +
! vi(t) 1F___ %
0 1 t -
() (b)
FIGURE 5.12 For Practice Problem 5.8.
X(s) = 8 = A + B = jo
s(s+3) s s+3
3
A= sX(s)S:0 = 3
8
B=(s+3)X(s)__, = -

= %sgn(t) - % e 'ult) - g sgn(t—1- g e (e -1)

Practice Problem 5.8 Determine the voltage V, () in the circuit of Figure 5.12b,
given the voltage source shown in Figure 5.12a.

1

Answer: V,(®) = ———
o’ (1+4jo)

(e”‘” + joe ™ — 1)

5.5.2 AMPLITUDE MODULATION

AM is one of the applications of the Fourier transform. Transmission of informa-
tion through space has become part of modern society, especially with the wire-
less telephony. However, transmitting intelligent signals—such as for speech and
music—is not practical: it requires a lot of power and large antennas. One way of
transmitting low-frequency audio information (50 Hz to 20 kHz) is to transmit it
along with a high-frequency signal, called a carrier. Any of the three characteristics
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FIGURE 5.13 Modulated signal.

(amplitude, frequency, or phase) of a carrier can be controlled, to be able to carry the
intelligent signal, called the modulating signal. Here, we are interested in the control
of the carrier’s amplitude. This is known as AM.

Amplitude modulation (AM) is a process whereby we let the modulating
signal control the amplitude of the carrier.

Consider the signal multiplier shown in Figure 5.13. We focus only on the case
when the modulating signal m(f) = cosw,z. The output of the multiplier is

y(t) = x(t)cos ,t (5.40)
Since the multiplication in the time-domain always results in convolution in the

frequency-domain,

V(@)= X 7[80-0,)+30+0,)]
T

= %[X(w— ®,)+ X(0+0,)] (5.41)

Thus, modulation results in shifting the spectrum of the signal as illustrated in
Figure 5.14. The signal with frequency ®,—o, is known as the lower sideband, while
the one with frequency o, + o, is known as the upper sideband.

At the receiving end of the transmission, the audio information is received from
the modulated carrier by a process known as demodulation. This shifts back the
message spectrum to its original low frequency location. A synchronous demodula-
tion multiplies the modulated signal y(r) with cosw,f as shown in Figure 5.15.

z(t) = y(t)cos w,t (5.42)

Taking the Fourier transform as we did before,
1
Z(o)= E[Y((o—(oo)+ Y(o+ ma)J
=1X(co)+1x(m-2m )+ix(m+2m) (5.43)
2 4 4 !

This is illustrated in Figure 5.16. The signal z(¥) is passed through a low-pass filter
(see Figure 5.17a), which passes only the low-frequency components. Thus, x(7) is
extracted as shown in Figure 5.17b.
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[X(w)]

(@)
[Y(w)]
A
1% X(o + 0g) Y X(w — o)
/\ _______________ Al2. A
-wg—B -wy —wy+B 0 wy—B wy wy+B (;

(b)

FIGURE 5.14 Amplitude spectra of: (a) signal x(z), (b) modulated signal y(7).

¥(®) % z(2)
Cosw,t
FIGURE 5.15 Demodulated signal.

|Z()]
1/4X(w + wg) 1/4X(w — )
4 Al2

—26 -B 0 B 20 ®
(b)

FIGURE 5.16 Amplitude spectra of z(?).
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|H(w)]
A | X(w)]
9 A
A
0 : -B 0 B :

(a) (b)

FIGURE 5.17  (a) Low-pass filter, (b) spectrum of the original signal.

Example 5.9

An AM signal is given by

x(t) = cos 200mt cos10*t

Identify the upper sideband and the lower sideband.

Solution

@, = 2001 — £, = 22 =100
2n

o, =10°n = f. = 2 = 5000
27

USB=f.+f,=5100=5.TkHz
LSB=f.—f, =4900 = 4.9 kHz

Practice Problem 5.9 A music signal whose frequencies range from 80 Hz to
12 kHz is used to modulate a 2-MHz carrier. Find the range of frequencies for the
lower and upper sidebands.

Answer: Lower sideband: 1,999,200-1,988,000 Hz
Upper sideband: 2,000,080-2,012,000 Hz

5.5.3 SAMPLING

Sampling is an important operation in signal processing. It may be regarded as a
way of reducing analog signals to discrete signals. Thus sampling is the bridge from
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v

0 t
(2)
S(t— nTs)
I #
-T, 0 T, 2T, 3T, .. ¢
(b)
x5(2)
| >
-T, 0 T, 2T, 3T, | | t

(©

FIGURE 5.18 (a) Continuous (analog) signal to be sampled, (b) train of impulses, (c) sam-
pled (digital) signal.

continuous to discrete signals. In analog systems we process entire signals, but in
digital systems, only samples of signals are necessary. Sampling can be done by
using a train of pulses or impulses. We will use impulse sampling here.

Consider the continuous-time signal x(7) depicted in Figure 5.18a. We multiply by a
train of impulses 8(r—nT,) as shown in Figure 5.18b, where 7, is the sampling interval
and f, = 1/T, is the sampling frequency (or rate). The value of x(¢) at point nT, is

x(6)8(t — nT,) = x(nT,)d(t — nT,) (5.44)
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The sampled signal x,(?) in Figure 5.18c is, therefore,

X, (1) = x(t)z 8(t—nT)) (5.45)

n=—o0

We take the Fourier transform of this and apply the frequency convolution property.

X, (o) = Tln [X()]*o, Z S(0—nw,)

n=-ow

1 o0
= E :E%X(oa)*éi(m—ncos)
1 o0
= i ngw X(o—nw,) (5.46)

where o, = 2n/T,. We have used item 23 in Table 5.2. Equation 5.46 states that the
Fourier transform X (w) of the sampled signal is a sum of translates of the Fourier
transform of the original signal X(o) at a rate of 1/T..

To ensure that the sampling process is successful, we must carefully select the
sampling interval. This is stated in the following sampling theorem:

A band-limited signal, with bandwidth W hertz, may be completely recovered
from its samples if taken at a frequency at least twice as high as 2W samples
per second.

(In practice, a signal is made band-limited by passing it through a low-pass filter
before sampling it.) For a signal, with no frequency component higher than W hertz,
there is no loss of information if the sampling frequency is at least twice the highest
frequency in the signal, that is,

Ti: f.>2W (5.47)

The minimum sampling frequency f, = 2W is known as the Nyquist frequency
or rate, and the maximum spacing 1/f, is the Nyquist interval, named after Harry
Nyquist (1889-1976) for his paper published in 1928. The Nyquist rate is the mini-
mum sampling rate necessary to preserve the information x(z). A signal is said to be
oversampled if it is sampled at a rate greater than its Nyquist rate. It is undersampled
if it is sampled at less than the Nyquist rate.
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Example 5.10

For frequencies above 4 kHz, the spectrum of a signal is zero. To sample the
signal, find the maximum time spacing between samples.

Solution
W =4 kHz
The Nyquist rate is
f,=2W =8 kHz
The Nyquist interval is
T = fl - ﬁ —125us

Practice Problem 5.10 A voice signal is band-limited to 2.5 kHz. Find the
Nyquist rate and the Nyquist interval for the signal.

Answer: 5 kHz, 0.2 ms

5.6 PARSEVAL'S THEOREM

Parseval’s theorem demonstrates another application of the Fourier transform. It
states the relationship between energy in the time and frequency domains. The theo-
rem is important in communications and signal processing.

If p(r) is the power associated with the signal, the energy carried by the signal is

E= J p(t)dt (5.48)

It is convenient to use a 1 — € resistor as the base for energy calculation. Fora 1 — Q
resistor, p(?) = v(t) = i*(f) = x*(¢), where x(?) stands for either voltage or current. Thus
Equation 5.48 becomes

E = J.xz(t)dt (5.49)

—0
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Parseval’s theorem states that this same energy can be calculated in the frequency-
domain as

0 ©

En= [ 2= [IX(@F do (5.50)

—0

indicating that the Fourier transform is an energy-conserving relation.

Parseval’s theorem states that the total energy delivered to a 1 — Q resistor
equals the total area under the square x*() or 1/2x times the total area under
the magnitude of the Fourier transform squared X(w)I*.

Parseval’s theorem is named after the French mathematician Marc-Antoine
Parseval des Chénes (1755-1836). It relates energy between the time-domain and the
frequency-domain. It provides the physical significance of X(®), namely, that 1 X(w)I?
is the energy density (in joules per hertz) corresponding to x(¢). The plot of IX(w)I>
versus o is the energy spectrum of the signal x(z).

To derive Equation 5.50, we begin with Equation 5.49 and substitute Equation 5.7
for one of the x(¢)’s.

Eq= Ixz(t)dt = jx(t) i I X()e™ dw |dt (5.51)

The function x(f) can be moved inside the inner integral, since the integral does not
involve time:

1 o0 00 .
Eo= j J x(1) X (0)e’ dodt (5.52)

—00 —00

Reversing the order of integration,

0

Eq = 1 j X(w) I x()e’'dt |dw
21

—0

1 ¢ 17
- J' X(@X(-o)do=— .[ X(@)X * (0)do (5.53)
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But X(0)X* (o) = |X(w)I>. Hence,

En= [ 2= [IX(@F do (5.54

as expected. Equation 5.54 shows the energy of x(f) can be computed directly in the
time-domain or indirectly from X(o) in the frequency-domain.

Since IX(w)l? is an even function, we may integrate from 0 to co and double the
result; that is,

B [ #0dr=" [|x@)f do (555)
—0 0

We may calculate the energy in any frequency band o, < ® < o, as
1
Epp=— I | X(0) [} do (5.56)
2n
o)}

We should note that Parseval’s theorem, as stated here, applies to nonperiodic
signals. Parseval’s theorem for periodic signals was covered in Section 4.4.6.

Example 5.11

A band-pass filter has its lower and upper cutoff frequencies as 10 and 20 Hz
respectively. If the input signal is V; = 4e~'u(t), calculate the 1T — Q energy of the
input and the percentage that appears at the output.

Solution
The energy of the input signal is

e 0]
=8

E = J.v,-z(t)dt = |16e7dt = 1—66’2‘
4 -2 0

The Fourier transform of the input signal is

4
"1+ jo

The energy in the interval 10 < f < 20 or 201 < w < 407 is

1 407 1 407 ]6 8401: d
EO:—II\/,(m)IZd(o:— dm:—j ©
T
20m

2n 21 J (1+ @?) 1+ @
20w 20m
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d. 1
Butj > X 2 - —tan" X4
a+o’ a

8 , |40n 8
E,=—tan" ® =—(1.5628-1.5549) = 0.02012
T 20m =«

é><100 = 2:012 =0.252%
E 8

i

Practice Problem 5.11 If x(t)eX(w), and

10, lol<2
X(w) =
0, lol>2

d*x(t)
Let y(t) = e

. Find _[ Ly dt

Answer: 2010.62 J.

5.7 COMPARING THE FOURIER AND LAPLACE TRANSFORMS

The Fourier and Laplace transforms are closely related, as evident in their defini-
tions, which are repeated here for convenience. The general (bilateral) Laplace trans-
form of x(7) is

X(s) = j x(t)e"dt (5.57)

where s = ¢ + jo. If we let s = jo, Equation 5.57 becomes

X(o) = J.x(t)e’j‘”’dt (5.58)

—0

which is the Fourier transform of x(#). For a causal signal x(¥) (i.e., positive-time sig-
nal, x(f) = 0, t < 0) and J. | x(2) | dt < o0, the two transforms are related by

X(0) = X(s)|, (5.59)

:j(,)
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showing that the Fourier transform is a special case of the Laplace transform with
s = jo. We can use Equation 5.59 to obtain the Fourier transform of signals for which
the Fourier integral converges. This integral will converge when all the poles of F (s)
lie in the left half of the s-plane and not on the jo axis.

The Laplace transform defined and used in Chapter 4 is one-sided (or unilateral)
in that the integral is over 0 < t < oo, restricting its usefulness to only positive-time
signals, x(f), # > 0. The Fourier transform accommodates signals existing for all time.

Although the Laplace transform has some advantages over the Fourier transform
in circuit analysis, being an extension of Fourier analysis to nonperiodic signals,
Fourier transform uses the same frequency-domain representation as phasor analy-
sis. Fourier transform shares some operational properties with the Laplace trans-
form but has some unique properties. For circuit analysis, Laplace transform is more
widely used because the Laplace integral converges for a wider range of signals and
automatically incorporates initial conditions.

5.8 COMPUTING WITH MATLAB®

MATLAB® function fourier can be used to find the Fourier transform of a signal
x(f), while the function ifourier can be used to find the inverse Fourier transform
of X(w). How to use them can be displayed with the help Fourier and help ifourier
commands. Since transfer functions are already functions of frequency, it is straight-
forward and easy to plot them using MATLAB.

Example 5.12

Use MATLAB to find the Fourier transform of

x(t) = ult — 2) — e ?u(t)

Solution
The MATLAB script for finding the Fourier transform of x(¢) is as follows:

syms X t
x=heaviside (t-2) -exp(-2*t) *Heaviside (t) %define the signal
X = fourier (x)

o

pretty (X) % simplify

This returns

X =
heaviside(t - 2) - heaviside(t) /exp(2*t)
X =
- (1/exp(2*w*i))* (- pi*dirac(-w) + i/w) - 1/(2 + w*i)
1 / i\ 1
R s | - pi dirac(-w) + - | - -------
exp(2 w i) \ w / 2 +wi
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From this, we obtain
B 1
2+ jo

X(w) = e/ [—na(—m) + L}
®
Practice Problem 5.12  Let y(t) = 48(t) + 2e~'u(t). Use MATLAB to find Y(w).

2
1+ joo

+4

Answer: Y(o) =

Example 5.13
Use MATLAB to find the inverse Fourier transform of

X(o) = 2/7‘”
1+ jo
Solution
The following MATLAB script is used to find the inverse of X(w).
syms X X W
X = 2%j*w/( 1 + j*w);

x = ifourier (X)
pretty (x)

This returns
X =
((4*pi*dirac(x))/exp(x) - (4*pir*heaviside (x))/exp(x))/(2*pi)

4 PI exp(-x) dirac(x) - 4 PI exp(-x) heaviside (x)

From this, we get

x(t) = 2e7'8(t) — 2e~u(t)

Practice Problem 5.13 Use MATLAB to find the inverse Fourier transform of

S(w)
o) = -
1+ 20
Answer: 1/(2m)
Example 5.14
Consider a system with transfer function
100s?

) =— 3 2 ’ = jo
s"+255 +50s” + 400s + 6000

Use MATLAB to obtain the plot of H(w).
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FIGURE 5.19 For Example 5.14.

Solution

The MATLAB script is as follows. Running the script results in the plot shown in
Figure 5.19.

num = [100 0 0];
den = [ 1 25 50 400 6000];
w = 0.1:0.1:100

H = fregs(num, den,w);
mag =abs (H) ;
phase = angle (H)*180/pi % converts phase to degrees
subplot (2,1,1)
plot (w/ (2*pi), mag)
xlabel (‘Frequency (Hz)')
ylabel (*Magnitude’)
subplot (2,1, 2)
plot (w/ (2*pi), phase)
xlabel (‘Frequency (Hz)')
vlabel (*Phase (deg)’)

Practice Problem 5.14 Use MATLAB to plot the frequency response to the trans-
fer function

1
T P47 +145+8

H(s)

Answer: See Figure 5.20.
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FIGURE 5.20 For Practice Problem 5.14.

5.9

1.

SUMMARY

The Fourier transform is defined as

X((o) = }'[x(t)} = ]ix(t)ej“”dt

—0

It converts a nonperiodic signal x(f) into a transform X(w).

. The inverse Fourier transform of X(w) is defined as

x()=F [ X(0)] = 1 _[ X(w)e™ do
2r J

. The magnitude |X(w)| plotted against ® is known as the magnitude spectrum of

x(f), while the plot of IX(w)I> against ® is known as the energy spectrum. The
angle of X(w) plotted against  is known as the phase spectrum.

. Common Fourier transform properties and pairs are in Tables 5.1 and 5.2

respectively.

. If H(w) is the transfer function of a system, the output Y(®w) can be obtained

from the input X(®) using

Y(0)=H(w)X(w)
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. Parseval’s theorem provides the energy relationship between a signal x(f) and

its Fourier transform X(®). The 1 — Q energy is

Eo= j x*(t)dt = 1 J' | X(0) ] do
2n

—0

. Applications of the Fourier transform include circuit analysis, AM, and sam-

pling. Applying the Fourier transform approach to circuit analysis involves
transforming the excitation and circuit elements into the frequency-domain,
solving for the unknown response, and transforming the response to the time-
domain using the inverse Fourier transform. For AM, the modulating signal
is used to control the amplitude of the carrier. For sampling application, we
found that no information is lost in sampling if the sampling frequency is equal
to at least twice the Nyquist rate.

. If x(f) = 0 for ¢ < 0, we can obtain the Fourier transform of signal x(f) from the

one-sided Laplace transform X(s) of x(7) by replacing s with jw.

. MATLAB commands can be used to find the Fourier transform of a signal or

its inverse.

REVIEW QUESTIONS

5.1 The Fourier transform of x(¢) is called the spectrum of x(?).

(@) True, (b) false

5.2 The Fourier transform and the Laplace transform of d(7) are the same.

(@) True, (b) false.

5.3 Which of these functions is not Fourier transformable?

@ eu=), (b) te>u@), © U1, d) 1)

5.4 If x(r) = 28(¢) and y(r) = dx/dt, then Y(») is

@ 28'(w), (b) 28(w), (©) 2jo, (d) 2/jo

. . —jo
5.5 The inverse Fourier transform of _¢ is

3+ jo
@ e, (byeu—1),(@c)e3t=D (d) e Dy - 1)

5.6 The property that relates e’ X (1) < X(0—0,) is

5.7 Evaluating the integral J.

(@) Time shift, (b) frequency shift, (c) time differentiation, (d) frequency
differentiation.

88(0—2)

P do gives
+o

@ 0,(b)1(©)2,(d) o

5.8 A unit step current is applied through a 1 H inductor with no initial current.

The voltage across the inductor is

@ u(@), (b) sgn(), (©) e'u(@®), (d) 5()

5.9 The total energy of a signal is independent of its phase spectrum.

(@) True, (b) false
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5.10 The MATLAB command for finding the inverse Fourier transform is
(a) invfourier, (b) ifourier, (c) fourierinv, (d) fourier

Answers: 5.1a, 5.2a, 5.3¢,5.4 ¢,5.5d, 5.6b, 5.7b, 5.8d, 5.9b, 5.10b

PROBLEMS

SECTIONS 5.2 AND 5.3—DEFINITION OF THE FOURIER
TRANSFORM AND PROPERTIES OF FOURIER TRANSFORM

5.1 Find the Fourier transform of

1, O<r<l

0, 1<t<?2
x(t) =

-1, 2<t<3

0, otherwise

5.2 Obtain the Fourier transforms of the following signals:

1, 2<t<-1
@ x()= 0, -1<t<l1
1, 1<t<2
0, otherwise
-1, 2<t<-1
) x(t)= 0, -1<t<l1
1, 1<t<?2

0, otherwise

5.3 Calculate the Fourier transforms of the signals in Figure 5.21.
5.4 Compute the Fourier transform of the signal in Figure 5.22.
5.5 Find the Fourier transform of the signal shown in Figure 5.23.

x(t) ¥(t)
A A
1
1
> -1 0o 1 Tt
0 o ¢
-1 -1

(a) (b)

FIGURE 5.21 For Problem 5.3.
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y(®)

A

1

FIGURE 5.22 For Problem 5.4.

~V

FIGURE 5.23 For Problem 5.5.

5.6 Using the properties of the Fourier transform, determine the Fourier transform
of these signals:
(@ x() =sinu(r)
(b) y(®) = e~'cos(3Du(t)
© z() = te"*u(t)
5.7 Verify that

(a) J coswtdm =27d(t)

—0
0

(b é j [3(0+®,)—8(0-w,) ] do =sin(w,1)
5.8 Find the Fourier transform of the following signals:
(@ x,(0) = e ¥sinl0ru(r)
(b) x,(t) = e=*cosl0tu(r)
5.9 (a) Find the Fourier transform of x(f) = 2cos(o,t + 0)
(b) Use the result in part (a) to derive the Fourier transform of y() =
2cos(100nt—mn/4).
5.10 Given that F(w)=F[f(#)], prove the following results using the definition of
Fourier transform

@ F[f(t-1,)]=e""F(o)
b) f[df(t):l = joF (o)

dt
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© FLfEDl=F(-o)
. d
) .F[U”(t)]—]%}"(co)
5.11 A signal has Fourier transform

5+ jo

X(w)=—5—"
(@ 0>+ j2m+1

Determine the Fourier transform of these signals:
(@ y@ =xQ2r-5)
(b) y() = 1x(2)
(© y() = x(f)sin2t
d’x(t)
d 1=
@ ¥ 17

5.12 A signal f{(r) has a Fourier transform given by

Floy= 200
8- +6jo

Without finding f(#), find the Fourier transform of the following:
@ flt-3)

(b) fid))

© e 7o)

@) f=29

5.13 The Fourier transform of a signal x(f) is

X(w)= i + 1d(w)
Jjo

Derive the Fourier transform of the following signals:
@ x,(0=4x2t-1)
(b) x,(f) = x(t—2)sint

@)&m=%ﬂ0

@ x,0) = 1x(0)

5.14 Obtain the Fourier transform of each of the following signals:
(@) x(r) = 4cos2t + 28(r)
(b) y(©) = 4sin2t—2sin2(r—1)—2sin2(t + 1)

5.15 If X(w) is the Fourier transform of x(f), show that

x(t+a)+x(t—a) < 2X(w)cosaw

5.16 Use the convolution property to derive the Fourier transform of the time-
domain product y(f) = sin2¢- u(f)
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X(w)

FIGURE 5.24 For Problem 5.17.

5.17 Let a signal x(7) have the Fourier transformX(w) shown in Figure 5.24. Without
computing x(?), sketch Y(w) when
@ y@ =xQ2n)
(b) () = x(1/4)
(©) () = x(f)cos2t
(d) y() = x(r)sin2t
5.18 Find the Fourier transform of the following signals:
@ x()=03=2)+dr—)+dr+ 1) +d(r+2)
(b) (@) = 4te~u(?)
(©) z(t) = 2e 'sin(40)u(r)
5.19 Verify the Fourier transform pairs:

te u(t) = %, a>0
(a+ jo)

5.20 Verify the following identities:

(@ X(0)= Jx(t)dt

1 o0
(b) x(0)=—— j X(0)do

5.21 (a) A signal x_(t) has the equivalent bandwidth B and equivalent duration T
defined as

J:w x(t)dt B J 7: X(w)do

— 0

)

B
x(0) X(0)

Show that BT = 2x.
(b) Determine the equivalent bandwidth of (i) I1(#/7), (ii) A(t/t).
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5.22 If X(w)=F[x(#)] and a and b are constants, prove the following identities:

(@ F x(t + bﬂ = ‘a‘ej“me(oo)
a
(b) FLx(1)d(t—a)] = X(a)e "

© F x(t)*S(;—bH = la|e "X ()

t, 0<r<1

5.23 Let x(r) be given by x(¢) = )
0, otherwise

(@) Sketch x(f). (b) Obtain X(w) by using differentiation property.
5.24 (a) If x(¢) is real and even, show that X(w) is real and even.
(b)Give an example for part (a).
5.25 If x(¢) and y(¢) are two signals with Fourier transforms X(®) and Y(w), show that

j x(t)y*(t)dt = L j X(0)Y *(w)do
27 s

—0

5.26 Consider X(w) as the Fourier transform of x(7) in Figure 5.25. Evaluate
@ X©)

(b) I X(w)do

2
© j X (o) do
5.27 Evaluate the Fourier transform of

sint, 0<t<2n
x(1) =

0, otherwise

x(t)

20

v

-2 -1 0 1 2 t

FIGURE 5.25 For Problem 5.26.
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SeCTION 5.4—INVERSE FOURIER TRANSFORM

5.28 Find x(f) for each of the following:

4nd(w—1
@ X(@="0"D
2+ jo
2
(b) X(w)=4nd(w)-—
jo
(©) X(w) = 10sinc(@w)
5.29 Find the signal corresponding to each of the following Fourier transforms:

@ X(@)= 12j‘f°
(b) Y(w) = 10e™'!
_ jo
© Z)= —o° + j50+6

5.30 Determine the inverse Fourier transform of the signal in Figure 5.26.

SECTION 5.5—APPLICATIONS

5.31 The transfer function of a system is

10
2+ jo

H(w) =

Determine the response y(¢) for the following inputs:
(@) x(r) = 5cos(21)
(b) x(1) = 5()
© x@) =e*u(r)
5.32 A signal x(r) is passed through a system as shown in Figure 5.27.
(a) Find the transfer function H(w).
(b) If x(¢) = cos(), find y(¢).
© If x() = e u(®), find y(@).

€V

-2-10 1 2

FIGURE 5.26 For Problem 5.30.
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x(t)4>| h(t) = et u(t) + 8(0) }—»y(t)

FIGURE 5.27 For Problem 5.32.

5.33

5.34

5.35
5.36
5.37
5.38
5.39

5.40

The transfer function of a circuit is

2
jo+2

H(w)=

If the input signal to the circuit is v (r) = e~*u(?), find the output signal. Assume
all initial conditions are zero.

Suppose v,(#) = u(?) for t > 0. Determine i(f) in the circuit of Figure 5.28 using
Fourier transform.

Use Fourier transform to find i(f) in the circuit of Figure 5.29 if v (r) = 10e~>u(?).
Find the voltage v, (f) in the circuit of Figure 5.30. Let i (f) = 8e~'u(?) A.

For the circuit in Figure 5.31, find the transfer function H(w) = V,(0)/V,(®).
Obtain the response v, (f) of the circuit in Figure 5.32, where v (r) = e~>u(r) V.
Refer to the filter shown in Figure 5.33. Find the transfer function and deter-
mine the type of filter.

A continuous-time linear system is described by

A0 g
ot +3y(1) = x(1)

Find the output y(7) due to the input x(?) = e~>u(f).

1Q

O

FIGURE 5.28 For Problem 5.34.

20

FIGURE 5.29 For Problem 5.35.
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2Q
i
i 10 12F_— v,
FIGURE 5.30 For Problem 5.36.
1 mF
| |
||
4
Vi 8 kO v,
FIGURE 5.31 For Problem 5.37.
1H
¥
vi(t) 40 v,(8)

FIGURE 5.32 For Problem 5.38.
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FIGURE 5.33 For Problem 5.39.
5.41 Determine the transfer function of the linear system characterized by

d*y(1)
dr’

dy(t)

L5 DO dx(t)
dt

+6y(t) = +x(1)

and find its impulse response.
5.42 Find the response of a system described by

DO oy =x(0), x(0)= e uld)
dt
using the Fourier transform.
5.43 In a system, the input signal x(?) is amplitude modulated by m(f) = 2 + cosw,t.
The response y(f) = m()x(?). Find Y(®) in terms of X(w).
5.44 In a communication system, two signals

x(t)=cos(100mt) and x,(¢) =2cos(400mr)

are multiplied to give x5(f) = x,(H)x,(?). Sketch the frequency spectra of
X,(0), x,(1), and x5().
5.45 Determine the Nyquist rates for these signals:
(@ x(r) = 10cos(60xr)
(b) x(t) = 3cos(40mr) + 2sin(507r)
5.46 A signal x(r) is passed through a low-pass filter. If the filter blocks frequencies
above 6 Hz, find the output y(f) for the following cases:
(@ x(r) =2—3cos(2nt) + 4sin(13xr) + 10cos(15mr)
(b) x(f) = 4-2sin*(4nr).

SECTION 5.6—PARSEVAL’S THEOREM

5.47 Find the energy dissipated by the resistor in the circuit of Figure 5.34.
5.48 Calculate the total energy of the signal whose magnitude spectrum is shown in
Figure 5.35.
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2Q

10e~‘u(t) V-

3in

FIGURE 5.34 For Problem 5.47.

|X(w)

10

-40 -20-10 0 10 20 40

FIGURE 5.35 For Problem 5.48.

5.49 If x(r) and X(w) are Fourier transform pair and

Xy 1° lo|<2
W)=
0, |o|>2

2 o0
Let y(r) = dd};y)' Find I|y(t) |* dt.

SecTioN 5.8—CoMmpUTING WiITH MATLAB®

5.50 Use MATLAB to obtain the Fourier transform of the following signals:

(@) x(@) = rexp(—nu(r)
(b) y(®) = (e7*—eu(t)
© 200 = 8(t + 1/2) + e~'u(d)

5.51 Use MATLAB to computer the Fourier transform of

x(6) =10e™ (40)u(r)

Plot the magnitude IX(w).
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5.52 Use MATLAB to find the inverse Fourier transform of

Jo

@ X(w)= 1i :
(%)
(b) Xy(w)= I+ 20
_ ()
@ X = o5+ o)

5.53 A system has the transfer function

_ s2+s+1
25° +10s> +16s5+8

H(s)

s=jo
Use MATLAB to plot the frequency response.
5.54 Use MATLAB to plot the transfer function

_100(1+ j0.010)
1+ j0.020)(1 + j0.05e)

H(w)

5.55 The three-pole Butterworth filter has the transfer function

H(s)= o

, S=jo
2 +20,.5% + 2055 + o)

Use MATLAB to sketch H(s) for o, = 2.
5.56 Use MATLAB to plot the transfer function

1

H(w)=
@) 1+ j0.20—0.050
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6 Discrete Fourier
Transform

To accomplish great things, we must not only act, but also dream; not only plan, but
also believe.

—Anatole France

CAREER IN COMMUNICATIONS SYSTEMS

Communications systems apply the principles of signals and systems. A commu-
nication system is designed to convey information from a source (the transmitter) to
a destination (a receiver) via a channel (the propagation medium). Communication
engineers design systems for transmitting and receiving information. The informa-
tion can be in the form of voice, data, or video.

We live in the information age—news, weather, sports, shopping, financial, busi-
ness inventory, and other sources make information available to us almost instantly
via communications systems. Some obvious examples of communication systems are
the telephone network, mobile cellular telephones, radios, cable TV, fax, and radar.

The field of communications is perhaps the fastest growing area in electrical
engineering. The merging of the communications field with computer technology in
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recent years has led to digital data communication networks such as local area net-
works, metropolitan area networks, and broadband integrated services digital net-
works. For example, the Internet (the “information superhighway”) allows educators,
business people, and others to send electronic mail from their computers worldwide,
log onto remote databases, and transfer files.

A communication engineer designs systems that provide high-quality information
services. The systems include hardware for generating, transmitting, and receiving
information signals. More and more government agencies, academic departments,
and businesses are demanding faster and more accurate transmission of information.
To meet these needs, communication engineers are in high demand.

6.1 INTRODUCTION

In the previous chapters, we have discussed applying frequency-domain techniques
to continuous-time signals and systems. In this and the next chapter, we consider
frequency-domain analysis of discrete-time systems. Here, we specifically consider
the Fourier analysis of discrete-time systems. Fourier analysis plays the same impor-
tant role in discrete-time systems as in continuous-time systems.

Our approach is similar to that used for continuous-time signals and systems. We
first introduce the discrete-time Fourier transform (DTFT) and its properties. We
then discuss discrete Fourier transform (DFT), and the fast Fourier transform (FFT),
a fast method of computing the DFT. The DFT plays a vital role in signal processing
for spectral, while FFT is the most commonly used Fourier analysis technique. The
main advantage of DFT and FFT is that they are well suited for computation by a
digital computer. We learn how to use MATLAB® to implement numerically the dis-
crete Fourier analysis covered in this chapter. We finally apply the concepts learned
in the chapter to touch-tone telephone and windowing technique.

6.2 DISCRETE-TIME FOURIER TRANSFORM

In the previous chapter, we defined the Fourier transform of a continuous-time signal
x(7) as

X(o) = I x()e ' dt 6.1

—0

By replacing the integral with summation, we obtain the discrete-time Fourier
transform (DTFT) of x[n] as

0

X(Q) = Z xnje 6.2)

n=—w

where we have used the uppercase omega (€2) as the frequency variable to distin-
guish the continuous-time and discrete-time cases. X(Q) is referred as the Fourier
spectrum of x[n].
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If we introduce 2 + 2x in Equation 6.2, we find that
X(Q+21)=X(Q), —0o<Q<w® (6.3)

since e7?* = 1. This shows that X(Q) is periodic. For this reason, X(2) can be expanded
in a Fourier series. If we multiply both sides of Equation 6.2 by ¢"dQ and integrate,
we obtain

I X(Q)e™"dQ =

jl {i x[n)e ™ } e’ dQ 6.4)

- n=-—o
But we know that the integral of any sinusoidal signal is zero when it is integrated
over a period. Hence,

> afn] I g0 — {zm["]’ m=n ©6.5)

0, m#n

n=—ow0

That is, only one term in the summation in Equation 6.4 remains. Thus, Equation 6.4
becomes

_ 1 f jon
x[n]= o J.X(Q)e dQ) 6.6)

which is the inverse discrete-time Fourier transform (IDTFT).
From Equations 6.2 and 6.6, we have the discrete-time Fourier transform (DTFT)
pair as

DFT: X(Q) = F{x[n]} = Zx[n]e*fﬂ" 6.7)
IDFT: x[n] = F~ {X(Q)} = J.X(Q)ejg”dQ ©.8)
2r J

where F{x[n]} denotes the DTFT of x[n]. The one-to-one relationship between x[n]
and X(Q2) is symbolized as

n]«22 5 X(Q) 6.9)
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Since X(€2) is periodic, the integral in Equation 6.8 can be evaluated over any interval
of length 2x. For example,

21
x[n]= L J‘ X(Q)e™dQ) (6.10)
27 g

The sufficient condition for X(Q) to exist (or to converge) is that x[n] is absolutely
summable, that is,

> lstnife s

(6.11)

We should keep in mind that although ® has units of radians/second, Q2 has units of
radians. Although x[n] is discrete, X(€2) is a function of the continuous variable Q.

Example 6.1

Given the discrete-time signal

1, n=-1
-2, n=0
xln]=+ 0, n=1
3, n=2

0, otherwise

Find the discrete-time Fourier transform.
Solution

Since x[n] has few nonzero terms, the finite sum becomes a sum of few terms

0

X(Q) = Z xnle /@

n=-—wn
= e _2e/% 4 0/ 4 3722
=ef 2437/

Practice Problem 6.1 Find the DTFT of the signal

2, n=-2
3, n=0
xln]=1<1, n=1
-1, n=2

0, otherwise

Answer: 2022 + 3 + e/2—e /22
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Example 6.2

Find the DTFT of the discrete-time signal
@ x[n] = 8In]

b) X[n]:{a", 0<n<m

0, otherwise
where a is a constant.

Solution
To find the DTFT of x[n], we apply Equation 6.7.

(@ X)) = Z x[nle™*" = ZS[n]e”Q” = =1
n=0

n=—w

Thus,
8n] 251

©

b) X = z xnle @ = Zane-/ﬂ" - Z(ae-fﬂ)n 6.2.1)

n=—w n=0 n=0

But the geometric series sums as

m _ m+l
an:1 T gi< 6.2.2)
n=0 1_q

with common factor g. By letting g = ae7*, we combine Equations 6.2.1 and
6.2.2 to get

1 _ (ae—jﬂ)mﬂ
jQ

X(Q) =
( 1—ae™

, lal<i

Practice Problem 6.2 Determine the DTFT of the discrete-time signal x[n] =
a"uln], that is,

Answer: % lal<1
1-ae
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Obtain the DTFT of the signal x[n] = al"l, |a] < 1.

Solution
The Fourier transform is

X(Q) = Zw: xlnle " = Zw:

n=-w

0

aln\e—jﬂn
n=—ow0

=1

=) a%e ™+ )y ale (6.3.1)
If we make the substitution m = —n in the second summation, we get
X(@Q = (ae )+ (ae)" 6.3.2)
n=0 m=1
Both summations are infinite geometric series
an:1+q+q2+-~-:%/ Iql<1 (6.3.3)
- -q
n=0

The first series in Equation 6.3.2 starts from n = 0 and its summation is given
by Equation 6.3.3. However, the second series starts from m = 1. We need to
subtract 1 from both sides of Equation 6.3.3 so that

0

anzqwu...:iqzil lgl<1 (6.3.4)
o 1- 1-q
Hence, applying Equations 6.3.3 and 6.3.4 into Equation 6.3.2 gives
1 ae’” 1-a°
X(Q) = : — = 6.3.5
@ 1-ae”® 1-ae 1-2acosQ+a’ (6.3.5

Practice Problem 6.3 Find the DTFT of a” u[-(n + 1)].

Answer: lal<1

-jQ 1’

ae
Example 6.4

Obtain the DTFT of the constant Signal x[n] for all n. That is,

xnl=1 n=0,+1,%2,...



Discrete Fourier Transform 277

Solution

0 ©

X(Q) = z nle " = z (De i 6.4.1)

n=-o n=-w

By expanding the frequency-domain train of impulse delta function into Fourier
series, we can show that

0

N 1 ; 21
(o —nwy) = — einhoo T =22

n=—
or

0

Z e = ZTEZ.O: 3(Q —n2m) (6.4.2)

n=-w n=-0n

where we have used Q = Tyw and the property B(at):%é‘)(t). Substituting
a

Equation 6.4.2 in Equation 6.4.1 leads the DTFT pair

xln]=1 forall n < 27:2 3(Q—27n)

n=-w

Practice Problem 6.4 Obtain the DTFT of

xln] = "

Answer: an Q- Q, —2mk)

k=—x

6.3 PROPERTIES OF DTFT

The discrete-time Fourier transform has some properties similar to those of the
continuous-time Fourier transform. For each property, we shall state it and derive it,
and then illustrate with some examples.

6.3.1 LINEARITY

The linearity property of the DTFT states that if

x5 X,(Q)
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and

Xn]<«2EL 5 X, (Q)

then

lax,[n]+ b, [n] <25 X, (Q) + bX,(Q)|

where a and b are constants. The proof is trivial.

6.12)

Let us apply the linearity property to find the DTFT of the sinusoidal sequence

x[n]=cosQn, |Y|<n
Using Euler’s formula,
— 1 Jjon —jon
cosQyn = E(e +e )
Applying the result in Practice Problem 6.4 and the linearity property,
X(Q) =27 ) 8(Q -0y ~2mk) + 8(Q-+ Q) ~2mk)

k=—o0

that is,
coss)on<ﬂ>2nz S(Q— Oy —27K) + S(Q + O — 27k)
k=—o0

6.3.2 TiIME SHIFTING AND FREQUENCY SHIFTING

(6.13)

(6.14)

6.15)

A delay or advance in the time domain results in a phase shift in the frequency

domain. That is, if

xn]«22 5 X(Q)

then

xn—nyl«22 e’jQ"OX(Q)|

This property can be proved using Equation 6.7.

F{x[n—ny]}= Z x[n—nyle ™™

n=-o

(6.16)

6.17)
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Let n — ny = k on the right side of this equation so that n = k + n,,.

0

F{x[n—ny]}= z x[ ke~ Hkrno) — =<0 z x[kle "

=—0 n=—w

= M X (Q) (6.18)

For example, suppose we want to obtain the DTFT of the sequence x[n] — x[n — 1].
Using the time-shifting property,

xn]—x[n -1« 51— e HX(Q) (6.19)

The dual property is the frequency shifting property, which states that

Anle™" LT X (Q - Q)| (6.20)

This can be derived by using Equation 6.7.

 prrT & ) ) hd )
x[n]e™ ™" & Zx[n]e’g"”e'fg” - Zx[n]e"’(g"ﬂ“) - X(Q-0Q,) (621

From this, it follows that
xnle " <25 X(Q+ Q) 6.22)
Combining Equations 6.19 and 6.21, we get
x[n]cos%n(%%[X(Q — )+ X(Q+Q) | (6.23)
which is the modulation property.

6.3.3 TiME ReversaL AND CONJUGATION

If x[n] <25 X(Q), then

x[—n] 2" X(-Q)| (6.24)
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We can prove this using Equation 6.7.

F{x[-n]}= Z x[—nle ¥

If we let —n = k, then

0

Fix[-n]} = Z k]’ =Z ke Dk = X(—Q) (6.25)

n=—ow n=-ow

A related property is the conjugation of x[n]. That is,

L #[n] « 2T X+ (—Q)| (6.26)

where * denotes the complex conjugate.

6.3.4 TIME SCALING

Time scaling for discrete-time signal is different from time scaling for continuous-
time signal. We recall if X(w) is the Fourier transform of continuous-time signal
x(1), then

Flx(ar)] = lallx((:j 6.27)

In the case of discrete-time signals, x[an] is not a sequence if a is not an integer. To
derive a result that closely parallels Equation 6.27, let k be a positive integer. We
define the signal

x[n/k] = x[m], if n = km, m = integer
Xln ={ (6.28)

0, if n is not a multiple of k

Since x,[n] is zero unless n is a multiple of &, the DTFT of x,[n] is given by

0

Xw@)= Z Xlnle "™ = Z X lmk]e

n=—w m=—o0

Replacing x[n] by x[m] gives

Xio(Q) = Z mle O™ = X (k) (6.29)

m=—o0
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That is,

X [n] 2 X (kQY) (6.30)

This shows that as the signal spreads out in time (k > 1), the corresponding Fourier
transform is compressed. Since X(Q) is periodic with period 2w, X(k€2) is periodic
with period 2n/k.

6.3.5 FREQUENCY DIFFERENTIATION

This property states that if x[n] <2 5 X(Q), then

RPN (2]
dQ

(6.31)

This can be proved by differentiating both sides of Equation 6.7 with respect to Q.
We obtain

dX(Q) — Z _jnx[n]e—an

aQ =~
Multiplying both sides by j gives
LAX(Q) N o
—= nx[nle 6.32
=10 ,,_Em (7] (6.32)

The right-hand side of this equation is the Fourier transform of nx[n]. Thus, Equation 6.31
follows.
For example, suppose we know that

JjQ

F{a”u[n]} - ejg — la|<1 (6.33)

Using Equation 6.31, we obtain

o

iQ
F{na"uln}} = j d( e’ ]: ae (6.34)

dol e —a (e™ —a)?
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6.3.6 TiME AND FREQUENCY CONVOLUTION

If x,[n]«— X, (Q) and x,[n]«—2 X,(Q), then

L ln]* x,[n] <2 X, (Q)X,(Q)| (6.35)

To prove this, we substitute the definition of discrete-time convolution in Equation 6.7.

F{x[n]* x,[n]} = Z[le[k]xz[”—k]jemn (6.36)

n=—o0 \_k=—o0

If we change the order of the summations, we obtain

F{x[n]* x,[n]} = le[k](zxz[”—k]ejm] 6.37)

k=—0 n=—ow

Applying the time-shifting property,

©

Z Xo[n—kle™ ™ = %X, (Q) (6.38)

n=-o0

Substituting this in Equation 6.37 yields

0

Flaln* xlnl} = > xlkle "™ X,(Q) = X, (Q)X(Q) 6.39)

k=—0

This confirms Equation 6.35 for time-convolution.
For example, for a discrete-time system with input x[#n], output y[n], and impulse
response h[n], we obtain

Y(Q) = HQ)X(Q) (6.40)

For frequency-convolution,

x[nlx,[n] %%Xl (Q)® X,(Q) 6.41)
TC




Discrete Fourier Transform 283

This is also called the multiplication property since multiplication is involved in
the time domain. This property states the multiplication of two signals in the time
domain corresponds to periodic convolution in the frequency domain, scaled by the
inverse of the period. Periodic convolution is defined by

2n
X,(Q)® X,(Q) = I X,(0)X,(Q—0)do (6.42)
0

To prove Equation 6.41, we have by definition
0 © 1 2n
F{x,[n]x,[n]} = Z xi[nlx,[nle ™ = Z olal o~ .!' X, (t)e "dr |e ™ (6.43)

n=—oo n=-o

Interchanging the order of integration and summation, we have

2n o
1 )
F{xl[n]xz[n]}:m‘([xl(T){E xz[n]ej(ﬂr)n:|d_c

2n
_ L I X, (D)X, (Q—-1)dt = 1 X1(Q)® X,(Q) (6.44)
2n i 21

For example, we can derive the modulation property as a special case of the
frequency-convolution.

F[ef“o"x[n] ] - i[m(g ~Q) |® X(Q) = X(Q— ) (6.45)

6.3.7 ACCUMULATION

Accumulation (or summation) is the discrete-time counterpart of integration. The
accumulation property can be stated as

0

1 o0
Z T APELLLEN e X+ TcX(O)Z 8(Q—2nm) (6.46)

k=—0 =0

The accumulation operation is defined by

0

ynl=) " A1kl (6.47)

k=—o0
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This is equivalent to convolution according to Equation 2.25,

0

sinl= Y ¥kl = x{n)*uln] (6.49)

k=—x

Applying the frequency-convolution property,

Y(Q)=X(EQU(Q) = X(Q) | lij + nz 3(Q—2nm)
mp '
~TX(0)) 6(Q—2mr)+ﬁX(Q) 6.49)

n=—w

6.3.8 PARSevAl’s RELATION

This can be derived from the convolution property. The energy of a discrete-time
signal x[n] is

E = |xinlf 6.50)

n=—oo

We may regard this as the value of DTFT of the signal

g[n] = ‘x[n]‘z = x[n}x*[n] (6.51)

Hence,
G(Q)= zi X(Q)X *(-Q) (6.52)
TC
Thus,
@ 1 2n
E. = = — || X(Q) ] dQ .
; ;Ix[nll anl ©QF d 6.53)

This is Parseval’s relation. IX(€2)I? is the energy spectrum of the signal.
For convenience, Table 6.1 summarizes the properties of discrete-time Fourier
transform, while Table 6.2 presents the transforms of some common transform pairs.
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TABLE 6.1
Properties of Discrete-Time Fourier Transform (DTFT)
Property Time Domain Frequency Domain
1. Periodicity x[n] X(Q +271) = X(Q)
2. Linearity ax,[n] + bx,[n] aX,(Q) + bX,(2)
3. Time-shifting x[n - k] e—jQkX(Q)
4. Frequency-shifting (modulation) ¢/ x[n] X(Q-9Qp)
5. Time reversal x[-n] X(-Q)
6. Conjugation x*[n] X#(—Q)
7. Time scaling Xlil X(kQ)
8. Differentiation nx{n] L
Q
9. Time-convolution x[n]*x,[n] X, (Q)X,(Q)
10. Frequency-convolution x,[n]x,[n] zi X (Q®X,(Q)
B
11. Accumulation z k] — o X+ nX(O)Z S(Q—2nm)
© 2n
12. Parseval’s relation E, = z | x[n] E, = 1 I | X(Q) | d
et © 2n i

Example 6.5

Determine the DTFT of x[n] = al”l.

Solution

x[n] can be expressed in terms of a’u[n] and a-"u[-n], that is,

a™" = a"uln]+ a~"ul-n] - 8[n]

We know from Table 6.2 that

F{a u[n]} BTy b lal<1
Using the time reversal property,
-jQ
F{a u[—n]} R lal<1

(6.5.1)

(6.5.2)

(6.5.3)
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TABLE 6.2
Common DTFT Pairs
Signal Type x[n] X(€)
1. Impulse d[n] 1
2. Shifted impulse S[n — k] ek
3. Unit step uln) &+ th 3(Q-2nm), |Q|<n
4. Shifted unit step —u[-n - 1] - nz sQ-2nm), |Q|<n
1—¢™
5. DC signal 1, for all n ZWZ 3(Q—2mk)
6. Gated function uln] — uln — k] sin(kQ2/2) ik
sin(€)/2)
7. Exponential a'u[n] 1 | a | <1
1—ae™
. . ae™®
8. Weighted exponential na'uln] — |al<1
(1-ae™™)?
(n + Da"uln] _r . la|<1
(1-ae™)?
2
9 Two-sided exponential ~ a"! S — lal<1
! p 1+a® —2acosQ
10. Complex sinusoid oo 2,-;2 Q- —27k)
1. Cosine wave cos Qun 21 8(Q -0~ 2k) +5(Q+ Q ~27k)
k=—n
12. Sine wave sin Qun ul Z S(Q— O — 27k) — S(Q + Q) — 27k)
J

Taking the DTFT of each term in Equation 6.5.1 and substituting Equations 6.5.2
and 6.5.3 gives
jQ eij 1— 2

Flam =&, € _q_ a lal<1 6.5.4)
{ } ef—a e M_g 1—2acosQ+a°

Practice Problem 6.5 Determine the DTFT of the composite signal

xIn] = a"uln]-sinyn, lal<1

1
Answer: 7___ +I“ZBQ Qy —2nk) — 8(Q +  — 21k)
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Example 6.6

Given the signal

0] 1, lnl<2 6.6.1)
x[n] = .6.
0, otherwise

(@) Sketch x[n] and its DTFT X(Q).
(b) Sketch the time-scaled signal x,[n] and its DTFT X, ().

Solution
(@ The rectangular pulse is shown in Figure 6.1a. It is also known as 5-point
rectangular window function. Its Fourier transform is

© (N=1)/2
X(Q) = z xlnle /@ = Me ™", N=5 6.6.2)
= )/2

n=-w n=—(N-1
This is a geometric sequence with factor e72. From Appendix A.10,
N N+l _ M
Ya=t T axi (6.6.3)
Py a-1

Applying this to Equation 6.6.2 yields

SN2 _ gfliN-h2ie e (e*f(N/z’Q — e/(NmQ)

e
X(Q) = o 1 T e RNR(g PR _ gkl
_sinNQ/2) ¢
"~ sin(0.5Q) B
_ sin(2.59) (6.6.4)
sin(0.5Q)
wln] X(©)
5
1
AN ./
0 n -7t \/ ¢ \/ bl Q
(a)
x)ln] X)(Q) =X(2Q)
5
| /[\
VAN AN
(b) 0 n -7 V \/ (:) \/ \/ T Q

FIGURE 6.1 For Example 6.6.
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x[n]

FIGURE 6.2 For Practice Problem 6.5.

The sequence in Equation 6.6.1 and its Fourier transform in Equation 6.6.4
are sketched in Figure 6.1a. Notice that although x[n] is discrete, X(Q) is
continuous.

(b) Using the time-scaling property in Equation 6.30 and Equation 6.6.4, we
obtain

sin(5QY)

Xo(Q) = X(2Q) = SinQ)

Both the signal x,[n] and its DTFT X,() are sketched in Figure 6.1b. Notice
that x,,[n] is obtained from x[n] by placing k — 1 =2 — 1 zeros between suc-
cessive values of the original signal x[n].

Practice Problem 6.6 Find the DTFT of the sequence shown in Figure 6.2.
Answer: 3 + 2cos 2Q + 4cos Q.

Example 6.7

Determine the Inverse of the Function

X(Q):m/ lal<1
Solution
From Table 6.2,
a”u[n]&ﬁ, lal<1
—ae

The given function can be expressed as

1 1 1
Xy = (1—ae )? [1— ae j(1 —ae ]
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By the convolution theorem,

xlnl = a"uln]* a"uln] = Z a“ulkla"*uln — k]

k=—x

= a”z1 =(n+Ma"uln] lal<1
k=0

Practice Problem 6.7 Given that h[n] = (%) uln] and xIn]= (%) uln], find

y[n]=h[n]*u[n].

1Y 1Y
A : 3 = _
nswer 3(2) uln] 2(3J uln]

6.4 DISCRETE FOURIER TRANSFORM

The discrete Fourier transform (DFT) may be regarded as a logical extension of
the discrete-time Fourier transform (DTFT) covered earlier. By sampling the DTFT
X(€) at uniformly spaced frequencies Q = 2nk/N, where k =0, 1, 2,..., N — 1, we
can define the DFT of x[n]. Let x[n], n =0, 1, 2,..., N — 1, be an N-point sequence.
We define the DFT of x[n] as

N-1
X[k] = Zx[n]e*ﬂ“"kw, k=0.12....N-1 (6.54)

n=_

The discrete Fourier transform relates discrete-time sequence x[n], n = 0, 1, 2,...,
N — 1, to the discrete-frequency sequence X[k], k =0, 1, 2,..., N — 1. The discrete
Fourier transform is defined by the pair

N-1

DFT: X[k]= F[x[n]]= Zx[n]e*ﬂ“”“” (6.55)

n=0

N-1

IDFT: x{n]= F'[ X[k]]= %ZX ke ™ (6.56)
k=0
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Equation 6.56 specifies the inverse DFT or IDFT. We use the notation
xn] <2 X[k 6.57)

Note that the DFT X[k] as given in Equation 6.55 is a periodic sequence with
period N. This should be expected since X[k] is a sampled version of the periodic
DTFT X(€2). Also, note that both DFT and the inverse DFT (IDFT) begin the sum-
mation from zero and end at N — 1 so that both are finite. Since DFT can be derived
from DTFT, we would expect their properties to be similar. The properties of DFT
are listed in Table 6.3.

Notice that items 6 and 7 in Table 6.3 involve circular convolution. The convolu-
tion of two discrete-time signals covered in Chapter 2

0

yln]=x[n]*h[n]= Z x[k]h[n—k] (6.58)

k=—00

may be regarded as linear convolution. Consider two sequences, x[n] and h[n],
defined for n =0, 1,..., N — 1, that is, they both have length N and zero values of n <0
and n > N. The periodic or circular convolution is defined as

N-1
ylnl = x{n] @ hln] = x{klhln— k] (6.59)

k=0

TABLE 6.3

Properties of the DFT

Property Time Domain  Frequency Domain

1. Linearity ax,[n] + bx,[n] aX,[k] + bX,[k]

2. Time-shifting x[n—m] e PmX ()

3. Frequency-shifting (modulation) ¢ /2™/N 4[] X(k = ko)

4. Time reversal x[—n] X(-k)

5. Conjugation x*[n] X#(—k)

6. Time-convolution x,[n] @ x,[n] X, [k]X,[k]

7. Frequency-convolution x,[n]x,[n] % X, [k]1® X,[k]

o]

N-1 N-1
1
. Parseval’s relation E = E |x[n]  E, =N E | X[k1P
n=0 k=0
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It is often regarded as the evaluation of two signals around two concentric circles.
Equation 6.59 is evaluated by writing the N values of x[n] equally spaced around an
outer circle in a counterclockwise direction, while the N values of A[n] are equally
spaced in a clockwise direction on an inner circle.

In general, X[k] is complex and it may be easier to express it in terms of its real
part R[k] and imaginary part /[k], that is,

X[k]=R[k]+jX[k] (6.60)
where
< 2mkn
R[k]=x[0]+ ;l x[n]cos( N j (6.61)
— 2mkn
Ik]=- E i .62
[k] A x[n]sm( N j (6.62)
Example 6.8

Find the DFT of the sequence x[n] = {1, -2, 1, 3}.

Solution

We can find the DFT of x[n] by either directly using Equation 6.55 or indirectly
using Equations 6.61 and 6.62.
x[0] =1, x[1] = =2, x[2] = 1, and x[3] = 3. With N = 4, Equation 6.55 becomes

N-1 3
XIk] = ZX[n]e’jz"”k/N = Zx[n]e”“”k/z, k=0,123
n=0 n=0
= x[0] + x[Tle /™2 4 x[2]e /™ +[3le ™2 k=0,1,2,3
=1-2e7 /™2 g7k | 3g7imk/2 k=0,12,3 (6.8.1)
The real part of this is
Rlk] = 1-2cos(—nk/2) + cos(—nk) + 3cos(-3nk/2), k=0,1,2,3
=1-2cos(nk/2) + cos(rk) + 3 cos(3nk/2), k=0,12,3
Evaluating this for each k leads to
3, k=0
0, k=1
Rlkl={" (6.8.2)
[k] 1, k=2
0, k=3
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The imaginary part of X[k] is

I[k] = =2 sin(~nk/2) + sin(—nk) + 3 sin(-n3k/2)
= 2sin(nk/2) —sin(nk) - 3sin(3nk/2), k=0,1,2,3

Evaluating this for each value of k, we get

0, k=0
5 k=1

Ikl=< " (6.8.3)
(k] 0, k=2
-5 k=3

From Equations 6.8.2 and 6.8.3, we obtain X[k] = R[k] + jI[k], that is,

3, k=0
5, k=1

Xlk] = (6.8.4)
(k] / P
-j5, k=3

Practice Problem 6.8 Determine the IDFT of the X[k] obtained in Example 6.8.
Hint: Use Equation 6.56.

Answer: x[n] = [1,-2, 1, 3].

Example 6.9

Find the periodic convolution of the following two sequences:

x[n]=[10,-2,3] and h[n]=[31,2,-1]

Solution
N = 4 and we have a case similar to the previous example. Instead of using real
and imaginary parts, we apply Equation 6.55 directly. From Equation 6.8.1,

X[k] = x[0] + x[1le ™% + x[2]e /™ +[3le ™2, k=0,1,2,3
X[0] = x[0] + x[1] + x[2] + x[3] = 2

X[ = x[0] + x[lle ™2 + x[2]e ™ + x[3le *™? =3+ 3

X[2] = x[0]+ x[Tle ™ + x[2le 7" + x[3le *" = -4

X[3] = x[0]+ x[Tle **? + x[2le ™™ + x[3le /*"? =3~ j3
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Similarly,
HIl = hlO] + Allle ™ + h[2le™™ + h[3le *™? =1 j2

2] = h[0]+ AlTle™™ + h[2]le7*™ + h[3]le™*" = 5
] = h[O]+ h[Tle > + h[2]e > + h[3le /™% =1+ 2

Convolution in the time domain produces multiplication in the frequency domain,
that is,

ylnl = hinl® xin] > YIk] = H(k)X (k)
Y[0]=H][0]X[0]=10
Y[1]=H[]X[1]=9-,3
Y[2]=H[2]X[2] =-20

Y[3]=H[3]X[3]=9+,3

We now use inverse discrete Fourier transform (or IDFT) to find y[n] from Y[k].
From Equation 6.56,

N-1
y[n] = ,’——’1 [Y[k]] — %ZY[k]eﬂnnk/N
k=0

Since N = 4, we have
y[0] = %[y[o] PV Y214 VI3)] = 2

ylil= [Y[O] +Y[le™? + Y2l + Y[3le /3n/2] _9

- B[=

y12l= [ VIOl + Y[l + V{2l + Y[3le” | = -7

N

! j3n/2 3jn j97/2
yBl= [ YIO)+ VIl + V{2l + ¥I3Je”™* | =6

From this, we have y[n] = 2, 9, -7, 6].

Practice Problem 6.9 Repeat Example 6.9 for
x[n] :[O, 1, 2,—3] and h[n]z(%) , n=0123

Answer: y[n] = [-0.875, 0.5, 2.125,-1.75].
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Example 6.10

Verify Parseval’s relation using the sequence x[n] = {1, =2, 1, 3}.

Solution
Using the given sequence directly, we get

N-1
:Z|x[n]|2 =144+1+9=15

n=0

In Example 6.8, we obtained the DFT of the sequence as

3, k=0
5, k=1
XIk] =
(k] / P
-j5, k=3
_I N-1
E, Nank 9+25+1+25)—15
k=0

confirming Parseval’s relation.

Practice Problem 6.10 Repeat Example 6.10 for the sequence x[n] = [0, 1, 2, =3].

Answer: £, = 14.

6.5 FAST FOURIER TRANSFORM

The number of complex computations required in calculating DFT is drastically
reduced by an algorithm known as the fast Fourier transform (FFT). The develop-
ment of FFT, which dramatically reduces the number of computational operations,
made DFT a very useful transform in many areas of applied science and technology.
FFT was developed by James Cooley and John Tukey in 1965. Keep in mind that
FFT is not a transform by itself; it is an algorithm—a fast computation of DFT.

For a discrete-time signal, we defined the N-point DFT and IDFT as

N-1
X[kl= ) alnle P k=0,1,..,N -1 6:63)

n=0
1 1
_ j2mnk/N — _
x[n]——N E X[k]e n=0,1,2,...,N-1 (6.64)

It is evident from Equation 6.63 that to compute each X[k] requires N complex mul-
tiplications and N — 1 complex additions. Since we have to evaluate X[k] for k=0, 1,
2,..., N — 1, the entire computation of DFT requires N> complex multiplications and
N(N — 1) complex additions. This becomes prohibitively time consuming for large N.
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TABLE 6.4

Number of Multiplications Required in DFT and FFT

M N=2m DFT FFT
1 2 4 1
2 4 16 4
3 8 64 12
4 16 256 32
5 32 1,024 80
6 64 4,096 192
7 128 16,384 448
8 256 65,536 1,024
9 512 261,144 2,304
10 1,024 1,048,576 5,120

The numbers of complex multiplications required for N-point DFT (N?) and FFT
(1;, log, N j are compared in Table 6.4. We can see from the table that as N increases,

the speed advantage of FFT becomes obvious. (For FFT computations, N need not
be a power of 2.) The FFT algorithm is very useful in communications and digital
signal processing.

Like inverse DFT (or IDFT), we also have inverse FTT (or IFFT). Although there
are several variations of Tukey—Cooley algorithm on FFT, they can be grouped into
two types: decimation in time and decimation in frequency. Discussion of these algo-
rithms is beyond the scope of this book. All that is needed as this stage is using FFT
and IFFT in MATLAB.

6.6 COMPUTING WITH MATLAB®

MATLAB has in-built commands fft and ifft for finding respectively the fast Fourier
transform and inverse fast Fourier transform of a discrete-time sequence. As we
know, finding DFT is the same as finding FFT.

Example 6.11

A square wave is represented by the sequence x[n] defined as
x[0]=x[1] = x[2] = x[3] = 1 and x[4] = x[5] = x[6] = x[7] = -1

Use MATLAB to find the FFT.

Solution
We use the following MATLAB script to find X[k].

x [1111-1 -1 -1 -11;
X fft (x)
stem (abs (X))
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FIGURE 6.3 For Example 6.10.

This results in
X = [0 2 - j4.8284 0 2 - j0.8284 0 2 + j0.8284 0 2 + j4.8284]

The MATLAB command stem is used to plot the absolute value of the result, as
shown in Figure 6.3. To ensure that the result is correct, we can find the IFFT of X.

X = [0 2-j%4.8284 0 2-j%0.8284 0 2+3*0.8284 0 2+j*4.8284]
x = ifft(X)

The result is the same as the given x[n].

Practice Problem 6.11 Find the FTT of the sequence x[n] = {1, -2, 1, 3}.
Answer: [3, /5, 1, —/5].

Example 6.12

Repeat Example 6.9 using MATLAB.

Solution

We find the FFT of sequences x[n] and h[n]. We multiply the results together and
then find IFFT to get y[n]. The MATLAB for doing the convolution follows.

x=[1 0 -2 31;
h=1[3 1 2 -1];
X = fft(x);

H = fft (h);

Y = X.*H;

y = ifft(Y)

This produces y[nl] = 2, 9, -7, 6], which is what we got the hard way in Example 6.9.
Practice Problem 6.12 Repeat Practice Problem 6.9 using MATLAB.

Answer: y[n] = [-0.875, 0.5, 2.125,-1.75].
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Example 6.13

297

Although MATLAB does not have a function for DTFT, we can use it to plot the
Fourier spectrum X(Q). In Practice Problem 6.2, the DTFT of the discrete-time
signal x[n] = a"uln] is

1

XQ)=——s
1—ae ™

Plot this for a = 0.8,

Solution

The necessary MATLAB script is shown below. The resulting plot of X(Q) is in

Figure 6.4.

a=0.8;

Omega= 0:

0.01:2.0;

X =1./(1- a*exp(-j*Omega)) ;
plot (Omega, abs (X)) ;

xlabel (*\Omega’)

ylabel (*X (\Omega) ')

Practice Problem 6.13 Use MATLAB to plot the Fourier spectrum

ae’®
X(Q) Zm, a=0.9

Answer: See Figure 6.5.

FIGURE 6.4
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For Example 6.13.
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FIGURE 6.5 For Practice Problem 6.13.

6.7 APPLICATIONS

We will consider some applications of the discrete Fourier transforms. Specifically,
we consider touch-tone telephone and windowing technique.

6.7.1 ToucH-TONE TELEPHONE

The touch-tone telephone uses signals of different frequencies to specify which but-
ton is being pushed. The keypad has 12 buttons arranged in four rows and three
columns. The DTFT of a sampled signal can be used to identify these frequencies.
Pushing of a button generates a sum of two sinusoids corresponding to its unique
pair of frequencies. The higher frequency sinusoid indicates the column of the key,
while the lower frequency sinusoid indicates the row of the key. Table 6.5 shows
the DTFT frequencies for touch-tone signals sampled at 8192 Hz. For example, the
digit 8 is represented by the signal

xg[n] = sin(0.6535n) +sin(1.0247n) (6.65)
TABLE 6.5
DTFT Frequencies for Touch-Tone Signals

Ocolumn

Oro 0.9273 1.0247 1.1328
0.5346 1 2 3
0.5906 4 5 6
0.6535 7 8 9
0.7217 0
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6.7.2 WINDOWING

Sampling a signal for storage in a computer requires that we limit the signal to a
finite length. This truncation causes discontinuities at either end of the sampled
signal. In other to minimize this effect called spectral leakage, the data samples can
be multiplied by windows which approach zero smoothly at the beginning and end
of the signal.

Windowing is a fundamental operation in digital signal processing and is implied
in DFT development. It refers to the operation of multiplying a signal x[x] by a finite-
duration sequence w[n] to produce a finite-duration signal x,[n], that is,

x,[n] = x[n]w[n] (6.66)

where
wln]=0forn<Oandn>N

This makes both the window sequence w[n] and the windowed sequence x, [1] to
be of length N. A few examples of window sequences are as follows:
1. Rectangular:

{1, 0<n<N-1
wln]= (6.67)

0, otherwise

2. Hanning:
winl= L 1—cos| 2™ ||, 0<n< N1 (6.68)
2 N-1 2
3. Hamming:
wln] = 0.54 —0.46003( Znn j 0<n<N-I (6.69)
4. Barlett:
winl=1-—2" 0<n< (6.70)
N-1" '
5. Blackman:
2mn 4nn
w[n]=0.4-0.5cos +0.08cos , 0<n<N 6.71)
N-1 N -

The windowing technique is used in many applications. For example, it is used in
Fourier analysis to decrease the size of the Gibbs overshoot and ripples. Windowing
is also used in filter design. By using the windowing technique, we can obtain a filter
that satisfies the design specs with fewer elements and less processing delay.
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Example 6.14

Compute the DTFT of the discrete sequence x[n] = 0.8"u[n]. Use N = 32 and
compare the exact spectrum with the one obtained using the Hamming window.
Solution

From Table 6.2, the exact DTFT of u[n] is

1

=——  Jlal<1
1—ae ™

X(€)

where a = 0.8. We use the following MATLAB code for computing X(Q) and
Hamming window.

a=0.8; N = 32;

n = 0:N-1
w = 0:0.01:pi; % values of Omega
fe = abs(1./(1 - a*exp(-j*w))); % exact DTFT
subplot (2,1,1)
plot (w, fe)

title(‘Exact spectrum’) ;
xlabel (*\Omega’); ylabel (‘Magnitude’) ;

wh = 0.54 - 0.46*cos (2*pi*n’/(N-1)) %Hamming window
fh=abs ((a.”n’.*wh) ' *exp (-j*n’ *w)) ;
fhs = sum(fh,1); %sums columns of N x length(w) matrix fh
subplot (2,1,2)

plot (w, fhs)

title('Spectrum using Hamming window’) ;
xlabel (*\Omega’); ylabel (‘Magnitude’) ;

The exact spectrum and the spectrum obtained using Hamming window are
shown in Figure 6.6.

Exact spectrum
6 T T T T T T

IS
T
1

Magnitude
N
T
1

0 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5

Q

Spectrum using Hamming window
1.5 T T T T T T

Magnitude

0 0.5 1 1.5 2 2.5 3 3.5

FIGURE 6.6 For Example 6.14.
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FIGURE 6.7 For Practice Example 6.14.

Practice Problem 6.14 Repeat Example 6.14 using Blackman window.

Answer: See Figure 6.7.

6.8 SUMMARY

1. The discrete-time Fourier transform (DTFT) of a signal x[n] is given by

0

X(Q) = Z x[nle @

n=-—ow

where the variable Q has the units of radians.
2. The inverse discrete-time Fourier transform (IDTFT) of X(Q2) is

x[n]= L I X(Q)e™ ™ dQ
27

3. The properties of discrete-time Fourier transform are listed in Table 6.1, while
Table 6.2 presents the transforms of some common transform pairs.
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4. The discrete Fourier transform (DFT) of a sequence x[n] of length N is given by

N-1
X[k] = Zx[n]eijTLnk/N
n=0
The properties of DFT are listed in Table 6.3.
5. The inverse discrete Fourier transform (IDFT) is given by
1 N-1
—_ j2mnk/N
MLNZMW

k=0

6. The fast Fourier transform (FTT) is an algorithm designed for efficient and
fast machine computation of the DFT.

7. MATLAB commands fft and ifft can be used respectively to find the fast
Fourier transform and inverse fast Fourier transform of a discrete-time
sequence.

8. The two applications considered in this chapter are touch-tone telephone
and windowing technique. The touch-tone telephone uses signals of different
frequencies to specify which button is being pushed. When a discrete-time
signal has an infinite length, we can terminate it by multiplying it by a window
function.

REVIEW QUESTIONS
6.1 The condition for signal x[n] to have DTFT is that x[n] is
(a) Integratable, (b) differentiable, (c) summable, (d) compressible.
6.2 The DTFT of the discrete-time signal x[n] = 1, n =0, 1, 2...., does not exist.
(@) True, (b) False.
6.3 Which of these is not convolution?
@ x{r*hlnl, (b) xnlhlnl, © D x{kIAln =K1, @ > hlklxn—k]
k=—o0 k=—0
6.4 If X(Q) is the DTFT of x[n], then the Fourier transform of x[-n] is
@ X(©Qe7, (b) X(Q)e?, (¢) X(Q - 1), (d) X(-Q)
6.5 The DFT is discrete but not periodic.
(@) True, (b) False.
6.6 Given the following discrete-time sequence x[0] = 1, x[1] = -1, x[0] = 3, x[3] = 2,
the value of X[0] is
@ 2+j3,(b)2—-j4,(c) 5, (d) none of the above.
6.7 For a 4-point computation of DFT, how many complex multiplications are

involved?
(@ 4, (b) 8, (c) 16, (d) 32.
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6.8 An N-point computation of DFT can be done by FFT provided N is even.
(@) True, (b) False.
6.9 The MATLAB command for finding IDFT is
(a) fft, (b) ifft, (c) stem, (d) idft, (¢) none of the above.
6.10 Which of the following MATLAB command is not used for windowing
technique?
(a) Hanning, (b) Hamming, (c) Blackman, (d) Bartlett.
Answers: 6.1c, 6.2a, 6.3b, 6.4d, 6.5b, 6.6¢, 6.7c, 6.8b, 6.9b, 6.10a.

PROBLEMS

SECTIONS 6.2 AND 6.3—DI1ScReTE-TIME FOURIER
TrANSFORM AND PrROPERTIES OF DTFT

6.1 (a) Show that X(€?) is periodic with period 2, that is, X(Q + 2n) = X(€2).

(b) Specifically show that X(Q) = 1%10 is periodic.

—ae
6.2 Find the DTFT of the signal shown in Figure 6.8.
6.3 Determine the DTFT of the sequence x[n] shown in Figure 6.9.
6.4 Compute the DTFT of the signals in Figure 6.10.
6.5 Determine the DTFT X(Q) for each of the following signals:
(a) x[n] =0.8"
(b) x[n] = d[n + k]—d|n—k]
(¢) x[n] = 0.4"cos2nuln]

-10 1 2 3 n

FIGURE 6.8 For Problem 6.2.

x[n]

{98

FIGURE 6.9 For Problem 6.3.
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FIGURE 6.10 For Problems 6.4 and 6.24.

6.6

6.7

6.8

6.9

6.10

Find the DTFT of each of the following discrete-time signals:
@ (0.5)"u[-n]

(b) 8[n — 2] — 8[n + 2]

© (0.8)"uln + 2]

Obtain the DTFT of the following composite signals:

(@) x[n] = (0.6)"u[n]—sin2n

(b) y[n] = 2"u[—n] + cos2an

Use Tables 6.1 and 6.2 to find the DTFT of

x[n]=a"uln]—a "u[-n]
A certain signal x[n] has DTFT given by

jQ
e]

) e +a

where a is a constant. Find DTFT Y(€2) of the following:
(@) ylnl = x[n-2]

(b) yl[nl = x[n]e*

(c) y[n] = x[n]sin 2n

(d) yln]l = x[n]* x[n]

The DTFT of a signal x[n] is

2

X(Q)= .
) 3+

Find the DTFT of the following signals:
(@) yln] = x[-n]

(b) z[n] = nx[n]

(¢) win] = x[n] + x[n—1]

(d) v[n] = x[n]cos(nm)
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6.11 Let X(2) be the DTFT of x[n] = (0.8)"u[n]. Find the signal corresponding to the
following spectra:
@ Y(Q) =X(-Q)
(b) Z(Q) = X(Q-m)
© W =jX"(€2)
6.12 Obtain the IDTFT of each of the following Fourier transforms:
(a) X(2) = 10sin(4€2)
(b) X(Q2) = 2cos?Q
6.13 Determine the signal x[n] corresponding to each of the following Fourier

transforms:

(@) X(Q) =1 + 3e722-2¢/4 4 P50
e 1

(b) X(Q)=—"2
1- l e

(©) X(Q) =3n[d(2-2) + d3(R + 2)]
6.14 Obtain the IDTFT x[n] of the rectangular pulse spectrum X(Q2) shown in
Figure 6.11.

, —-n<Q<n . . . .
6.15 Let X(QQ) = . Use this function to verify Parseval’s relation.
0, otherwise

6.16 Use Equation 6.8 to determine the IDTFT of each of the spectra in Figure 6.12.

X(Q)
A
2
-11/2 0 11/2 VQ
FIGURE 6.11 For Problem 6.14.
X(Q) X(Q)
A
2
1 cosQ)
-2 -1 0 1 2 EZ —11/2 0 71/2 SV'Z

(a) (b)

FIGURE 6.12 For Problem 6.16.
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6.17 Show that if x[n]<X(€2), then

x[n+k]—x[n—k] e 2jX(Q)sin kQ

6.18 Find the convolution y[n] = h[n]* x[n] of the following pairs of signals:

(@ x[n]=(ij uln], hn]=1

(b) x[n]= (;J uln], h[n]=98[n]+9d[n-1]

1 n 1 n
© x[n]—(z] uln], h[ﬂ]—&j uln]

SECTIONS 6.4 AND 6.5—DISCRETE FOURIER
TRANSFORM AND FAST FOURIER TRANSFORM

6.19 Find the DFT of the sequence x[n] = a".
6.20 Prove the following DFT properties:

N-1
(@ X[01= ) x{n]
n=0
N-1
(b) XIN/21= ) (=1)'xin]
n=0
6.21 Find the DFT of the following sequences:
(@ x[n]=1{0,1,2,3}
byl ={1,1,-1,-1, 1, 1, -1, -1}
6.22 Calculate the DFT of the following discrete-time signals:
(@ x[0]=-1, x[1]=1, x[2]=0, x[3]=2
(b)x[0]=1, x[1]=2, x[2]=3, x[3]=-1
6.23 Show that
Ttkm

@) x[n]cos(z j<——>;[X(m—k)+X(m+k)]

2mtkm j

. 1
(b) x{n] sm( N <—>2—j[X(m —k)=X(m+k)]

6.24 Determine the DFT of the signals in Figure 6.10.
6.25 The DFT of a signal x[n] is

X(0)=1, x(1)=1+,2, X(2)=1-j, X(3)=1+j, X(4)=1-j2

Compute x[n].
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6.26 Given that X[k] = DFT{x[n]}, show that
1 *
xm]=N{Dan*wn)

where * denotes complex conjugation. This shows that the same algorithm
used for computing DFT can be used for computing IDFT.
6.27 How many multiplications are required in DFT and FFT when N = 2048?

SecTiON 6.6—CoMPUTING WiTH MATLAB®

6.28 Use MATLAB to compute the FFT of the following signals. For each signal,
plot IX(k)I.
@ x[n]=1,0<n<12
(b) x[n]=n,0<n <10

1, n=0
(© x[n]l=<1/m, n=12,...,10
0, otherwise

(d) x[n] =n(0.8)", 0<n<10
6.29 In Example 6.3, the DTFT of the signal x[n] = a""is

1-a°

XQ)=——"+
) 1-2acosQ+ a?

For a =0.75 and 0 < Q < 2x, plot IX(2)!.
6.30 Use MATLARB to find the DFT of the discrete signal

x[n]={12,0,-1,-2,1,5,4}

6.31 Consider the 16-point sequence

1, n=0,1,..,16
x[n]= .
0, otherwise

Using MATLAB, plot the absolute value of the DFT of x[n].

SECTION 6.7—APPLICATIONS

6.32 Use MATLAB to plot Blackman windowing for N = 15.
6.33 Modify the window analysis program of Example 6.14 by replacing Hamming
window with Hanning window.
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7 z-Transform

There is no end to education. We are all in the kindergarten of God.

—Elbert Hubbard
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CODES OF ETHICS

Engineering is a profession that makes significant contributions to the economic and
social well-being of people all over the world. As members of this important profes-
sion, engineers are expected to exhibit the highest standards of honesty and integrity.
Unfortunately, the engineering curriculum is so crowded that there is no room
for a course on ethics in most schools. The Institute of Electrical and Electronics
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Engineers (or IEEE) Code of ethics is presented here to acquaint students with ethi-
cal behavior in engineering professions.

We, the members of the IEEE, in recognition of the importance of our technolo-
gies in affecting the quality of life throughout the world, and in accepting a personal
obligation to our profession, its members and the communities we serve, do hereby
commit ourselves to the highest ethical and professional conduct and agree:

1. To accept responsibility in making engineering decisions consistent with
the safety, health and welfare of the public, and to disclose promptly factors
that might endanger the public or the environment.

2. To avoid real or perceived conflicts of interest whenever possible, and to

disclose them to affected parties when they do exist.

. To be honest and realistic in stating claims or estimates based on available data.

. To reject bribery in all its forms.

5. To improve the understanding of technology, its appropriate application,
and potential consequences.

6. To maintain and improve our technical competence and to undertake tech-
nological tasks for others only if qualified by training or experience, or after
full disclosure of pertinent limitations.

7. To seek, accept, and offer honest criticism of technical work, to acknowl-
edge and correct errors, and to credit properly the contributions of others.

8. To treat fairly all persons regardless of such factors as race, religion, gender,
disability, age, or national origin.

9. To avoid injuring others, their property, reputation, or employment by false
or malicious action.

10. To assist colleagues and coworkers in their professional development and to

support them in following this code of ethics.

B~ W

—Courtesy of IEEE

7.1 INTRODUCTION

The z-transform is the discrete-time counterpart of the Laplace transform. It puts
at our disposal a compact tool for describing a broad variety of systems and their
properties.

Just as Laplace transform is useful in handling signals that do not have Fourier
transform, the z-transform enables us to treat discrete-time signals that do not have
discrete-time Fourier transforms (DTFT). (For example, the unit sequence u[n] does
not have a DTFT.) Also, just as the Laplace transform converts integrodifferential
equations into algebraic equations, the z-transform converts difference equations
into algebraic equations that are easier to manipulate and solve. Therefore, tech-
niques in this chapter parallel the techniques used in Chapter 3 on Laplace trans-
form. Although the properties of the z-transform are similar to those of the Laplace
transform, there are some differences. Like Laplace transform, the z-transform is
applicable to systems with initial conditions.
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We begin by defining the z-properties and studying its important properties. The
z-transform of some common discrete-time signals is derived. We present methods
for finding the inverse z-transform. Two important applications of the z-transform are
discussed. Finally, we consider using MATLAB® to find z-transform and its inverse.

7.2 DEFINITION OF THE z-TRANSFORM

The z-transform is the generalization of the discrete-time Fourier transform (DTFT).
We recall that from Chapter 6, the DTFT of a signal x[n] is given by

0

X(Q) = Z e ™ A)

n=—oo

Inserting a factor p~ in Equation 7.1 leads to

X@)= ) xnlp”e ™ =" xinl(pe’) " (72)

n=-—00 n=—o0

If we let z = pe/?. Then, Equation 7.2 becomes

X(z)= Z x[nlz™ (7.3)

n=—ow

This is the two-sided (or bilateral) z-transform. The one-sided (or unilateral)
z-transform is

X(2)=2(xinl} = ) xlnlz” (74)
n=0

Only the one-sided z-transform will be discussed in this chapter. X(z) and x[n] con-
stitute a z-transform pair.

An]l—2>X(2) (7.5)

Note the following:
1. From Equation 7.4, we notice that the z-transform of x[n] is a power series
of 7! whose coefficients are x[n], that is,

X(z)= Zx[n]z*" =x[0]+ x[1z  + X212 2 + x[3]z > + - (7.6)

n=0

In this power series, z " can be interpreted as indicating the nth sampling
instant.
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1
z
a
\ Q _ Re(z)

FIGURE 7.1 The unit circle in the z-plane.

2. We also notice that the sum in Equation 7.4 may not converge for all values
of z. Each z-transform is associated with a region in the complex plane for
which the transform exists. We will discuss this further in the next section.

3. Generally, z is a complex variable with z = ¥ + j€2 just as the Laplace trans-
form variable s = 6 + jw. z as a complex number z = pe/® is illustrated in
Figure 7.1.

4. In our development of z-transforms, we will be using the formula for the
geometric series

0

1
1+a+a2+a3+--~= a": 7.7
Z o (77)
which is convergent if and only if lal < 1.
Example 7.1
Let x[n] by defined by
1, n=1
x[n] =13, n=4
0, otherwise
Find the z-transform.
Solution
Using Equation 7.6,
3
X(z)=1z"+3z"* :l+i4 =2 1—3

z Z z

Practice Problem 7.1  Find the z-transform of the discrete-time signal

2, n=11
xln]=1 4, n=42
0, otherwise

Answer: 4+27”'

Z42
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Example 7.2

Find the z-transform of the impulse sequence 8[n — m], m > 0.

Solution
The given sequence can be written as

8[n—m]:{1/ n=m

0, otherwise

that is, the sequence is zero for all n except when n = m. Hence, the z-transform is
Z{8ln—ml} = Zé[n -mlz"=z" (7.2.1)
n=0

Notice that if m = 0, then

Z{8[n]} =1 (7.2.2)

Practice Problem 7.2  Find the z-transform of the unit-sample sequence

1, n=0
x[n] =
0, n=#0

Answer: 1.

7.3 REGION OF CONVERGENCE

Just like Laplace transform, the z-transform X(z) converges only for certain range of z
known as the region of convergence (ROC). In order for the z-transform to be com-
plete, its ROC must be specified. The ROC specifies the region where the z-transform
converges. The ROC may be within a circle (such as Izl < lal, as shown typically in
Figure 7.2a), outside a circle (such as Izl > lal, as typically shown in Figure 7.2b), or
within an annulus (such as lal < Izl < 151, as shown typically in Figure 7.2c). An ROC
does not include a pole because the z-transform does not converge at a pole.
To illustrate how to find the ROC, let us consider the following examples.

Example 7.3

Determine the z-transform of an exponential discrete-time signal represented by
x[nl = a"uln].

Solution
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Im(z) Im(z)

Re(z)

Im(z)

Re(z)

(c)

FIGURE 7.2 The regions of convergence (ROCs) of the z-transforms of various sequences.

This is a geometric series which has the form

In our case, g = a/z so that

2 <1 or lzlslal. This is similar to ROC in

The region of convergence is

Figure 7.2b.

Practice Problem 7.3  Obtain the z-transform of the discrete-time unit step signal
x[n] = uln]. Specify the ROC.

Answer: _£_ | ;|51

-
Example 7.4

Find the z-transform of the following composite signal and determine its region of

convergence.
x[n] = (1]" ulnl+4 [— 1}”’ uln]
2 3
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Solution
x[n] consists of two signals. We may find the z-transform of each separately and

add them.
xln] = Gj uln]

Xi(2) = Zz , ‘Z‘>7 (7.4.1)

From Example 7.3,

Similarly,

X,(2) = || % (7.4.2)

To determine the ROC, we realize that X(z) exists if and only if both X;(2) and X,(z)
exist. Hence, the region of converge is |z| > 2, which covers the ROC of both
Xi(2) and X,(2).

Practice Problem 7.4 Determine the z-transform and the ROC for

yln]=4 Gj uln]-5 @J uln]

12z 15z 2
[zI>=

Answer: Y(z) = - ,
3z-1 3z-2 3

7.4 PROPERTIES OF THE z-TRANSFORM

We now consider some basic properties of the z-transform. We use those properties
to derive the z-transform of some signals and develop a z-transform table. We first
state each property, prove it, and then illustrate it with examples.
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7.4.1 LINEARITY

Let x[n] and y[n] be two discrete-time signals with transforms X(z) and Y(z), respec-
tively. The z-transform of their linear combination is

|2 {ax(n]+ bylnl} = aX(2)+bY (2) (7.8)

where a and b are constants.
For example, from Example 7.3 and Practice Problem 7.3, we know that

a"uln] & i, ‘z‘ < ‘a‘ and u[n] < i, |z|>1 (7.9)
z—a z-1
By the linearity property,

2a"uln]+3uln]=—"+—"-, |z|>|a| and |z|>1 (7.10)
z—a z—

7.4.2  TIME-SHIFTING

This properties states that if X(z) is the z-transform of x[n], then

[x[n—m] > "X (2)| (7.11)

assuming zero initial conditions. To prove this, we use Equation 7.4.

0

Z{x[n—m]} = Zx[n -m]z™"

n=0
By changing variables k = n — m, we get

0

Z{x{n—m)} = Zx[k]z-“'”k) = z-mzx[k]z-k - 77"X(2) (7.12)

k=0 k=0

This assumes that the signal is causal (x[n] = 0 for n < 0).
For example, when m = 1 or —1, we have

xn-11z77"'X(2) 13

x[n+1]1> 2X(2)
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For nonzero initial conditions, the time delay property becomes

xn-mle 27"X@) + 727" x[=1]+- -+ 2 A[—m + 1]+ x[-m] (7.14)

7.4.3 FREQUENCY SCALING

If X(z) is the z-transform of x[n], then

a

a"x[n] < X(Zj (7.15)

This implies that multiplication by a”" in the time domain corresponds to scaling in
the frequency or z domain.
By definition, the z-transform of the sequence a"x[n] is

2farant)= Y stk =Yt 2]

n=0 n=0

_ (Zj (7.16)
a

This property can be used to find the z-transform of signals multiplied by an expo-
nential signal. For example,

e xn] > X(e7) (7.17)

‘We know that

1 JjQn —jQn
cos(Qn)u[n]zg(e Ay o/ )u[n]

(7.18)
and that
uln] Hﬁ (7.19)
o ez
e uln] & Pl P (7.20)
Similarly,
e uln) & ——5 (7.21)
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Combining Equations 7.20 and 7.21 gives

1 Z Z 2(z—cosQ)
Z Q =— _ — | = 7.22
{cosQuuln]} 2[Z_ejg Z_ejg} 7 27005041 (7.22)
7.4.4 TimME REVERSAL
If x[n]«<X(z), then
1
x[—n] X[j (7.23)
Z

To prove this, we use Equation 7.4

Z(xl-nl}= ) xl-nlc”

n=0

Replacing —n with k,

™" 1
Z{x[-n]} = klZ* = Kll=| =X|= 7.24
{x[-n]} E xlk]z E x[ ](ZJ (Zj (7.24)

For example, from Equation 7.17,

uln] < =
7—
Applying Equation 7.24,
1/z 1
u[-n =— 7.25
=] 1/z-1 1-z 72

7.4.5 MODULATION

The modulation property is very important in communication theory and digital
signal processing. If x[n]<X(z), then

(cosQn)x[n] <> %[X(ejgz) + X(e’jQz)] (7.26)

(sinQn)x[n] <> é[X(ejQz) - X(e‘f“z)] (7.27)




z-Transform 319

To prove Equations 7.26 and 7.27, we use Euler’s identity

cosQnx[n] = %(e”n"x[n] + ejQ"x[n]) (7.28)
. _ l —jQn _ jn
sin Qnx[n] = 0 (e x[n]—e x[n]) (7.29)
From Equation 7.17,
e x[n] > X(e7) (7.30)
e x[n] > X (e’ 7) (7.31)

Applying Equation 7.30 and 7.31 on Equations 7.28 and 7.29 produces Equations
7.26 and 7.27. We can use this property to find the z-transforms of cosine and sine
signals. We already got the z-transform of cosine in Equation 7.22.

7.4.6 ACCUMULATION

Let y[n] be the summation or accumulation of the discrete-time signal x[n], with
x[n] =0 forn =-1, -2, =3,.... Then

n

ynl= " xik] (7.32)

k=0

The accumulation property states that

n

Z X[kl il X(2) (7.33)
-

k=0

It states that the z-transform of the sum of x[n] is equal to the z/(z — 1) times the
z-transform of x[n].
To prove Equation 7.33, we write

n—1

sinl=Y " xik]+xdn] (7.34)
k=0
This may be written as
yn]=yln—-1]+x{n] (7.35)

Taking the z-transform of both sides and applying the time-shifting property, we
obtain

Y(2) =%Y(Z)+X(z) (7.36)



320 Signals and Systems: A Primer with MATLAB®

Solving for Y(z) yields

Y@= X@)=X@) (7.37)
1 z—1

7.4.7 CONVOLUTION

This property plays a very useful role in linear system theory. It states that if
x[n]<> X(z) and h[n]< H(2) (7.38)

then their time convolution in the time domain is equivalent to their product in the
frequency or z domain, that is,

[nl=xin]*hn] © Y(2) = X(2)H(2)| (7.39)

Since the property applies to causal as well as noncausal signals, we prove it to the
general case of noncausal signals, where the convolution sum ranges from —oo to co.
By definition,

Y(z2)= i x[n]*hln]z" =i [i x[nJh[n— k]]z_"

n=—m n=-0 \_k=—0

-y x[k][i i k]z""J (7.40)
f— n=—o0

We note that the term in brackets is the z-transform of the shifted signal i[n — k]. By
applying the time-shifting property, we get

k=—0 k=—o0

Y(2)= ) k| H) = {Z X[k]z"JH(z) =X(2)H(2) (7.41)

7.4.8 INITIAL AND FINAL VALUES

The initial x[0] and the final value x[oo] are given by the initial and value theorems,
which are stated as

x[0]= 11_>rg X(2) (7.42)

x{oo] = lim(1— ZHX(2) (7.43)

assuming that x[oo] exists.
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To prove Equation 7.42, we write Equation 7.4 explicitly as
X(2)=x[01+ 2Nz '+ x2]z 2+ + x[k]z “ +-- (7.44)

As 7—00, the terms z7% —0 for all k > 0. Hence, Equation 7.44 becomes

lim X(z) = x[0]

To prove Equation 7.43, we apply the time-shifting property
Z{xn]—x[n-11} =1-z"HX(z) (745)

The left-hand side of Equation 7.45 can be written as

© N
Z{x[n] —xn—-1])" = lim Z{x[n] —xn-1])z" (7.46)
n=0 N n=0
If we take the limit as z—1, combining Equations 7.45 and 7.46 produces

lim(1 - ZHX(2)= lim Z{X[n] —x[n-1]}

n=0

= }]im X(N) = x(c0) (7.47)

The initial value theorem can be used to check the z-transform of a given signal. The
final value theorem gives the correct result only when x[oo] exists. It can be shown
that if there are poles on or outside the unit circle, except for a single pole at z = 1, the
final value theorem does not apply.

For example, let us find the initial and final values of a unit step function, u[n]. We
know that #[0] = 1 = u[co]. By the initial value theorem,

u[0] =limU(z) = lim(zlj =1 (7.48)

—o\ 7 —
By the final value theorem,

x[oo] = lim(1-z )X (z) = lim [Z_l Z) =1 (7.49)
71 z—1 z z—1

The theorems confirm what we know already.
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These properties of the z-transform are listed in Table 7.1, while Table 7.2 pro-
vides a collection of the z-transforms of common signals.

Example 7.5

Find the z-transform of the pulse function defined by

(] 1, n=0,1,2,...,m-1
nl=
P 0, otherwise

Solution

We can express pln] in terms of the unit step function.

plnl = uln] = uln — ml

TABLE 7.1
Properties of the z-Transforms
Property x[n] X(2)
1. Linearity ax[n] + by[n] aX(z) + bY(z)
2. Time-shifting x[n—m] Z7X(2) + 27 X[ + e+ 7 [—m + 1]
+ x[—m]
3. Frequency scaling ax[n] X (ij
a
. 1
4. Time reversal x[—n] X [7j
z
d
5. Multiplication by n nx[n] o X(2)
. d , d?
6. Multiplication by n? n"x[n] z—X@)+z —5 X(2)
dz dz

7. Modulation

Multiplication by e**" ™™ x{n] X(e 7 7)

S 1 o 0
Multiplication by cosQn  (cosQn)x[n] E[X (e 2)+ X(e™ z)}
Multiplication by sinQn (sinQn)x[n] %[X (ejgz) - X (e’fQ z)}

. 2 Z
8. A lat —X
ccumulation Zx[k] — 2
k=0
9. Convolution x[n]* hln] X(2)H(2)
10. Initial value x[0]= 11_{2 X(z)

11. Final value xfoo] = lim(1 - ZHX @)
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TABLE 7.2
Some Common z-Transform Pairs
x[n] X(2) ROC
1. 8[n] 1 All z
2.8[n - m] % z#0
3. uln] = I7> 1
z—1
4. a"uln] < Izl > lal
Z—a
5. nuln] z lZ> 1
(z-1y
2
6. (n + Duln) < lz1> 1
(z-17
7. nfuln] 2(274—13) Izl > 1
(z—-1)
8. na'uln] @ 3 1zl > lal
(z—a)
2
9.(n+ Da" < Izl > lal
(z—a)’
10. n2a"u[n] M 1zl > lal
(z—a)
11. exp[—anT] - Izl > e~
z—exp[—aT]
2
12. cosQn uln] T —zeosQ o

72 —2zcosQ+1

zsin Q)

i _— Izl > 1
13. sinQn u(n] 2 2700541
2 p—
14, a"cosQ@my ufn] L WSy
7" —2zacosQ+a
15. a*(sinQn) uln] zasinQ Izl > lal

22 —2zacosQ+ad*
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Taking the z-transform of each term and applying the time-shifting property,
we get

z o Z z(1-z7")
gm L AT )

P(z) =—- =
z-1 z-1 z-1

Practice Problem 7.5 Let p[n] be as defined in Example 7.5. Derive the
z-transform of

glnl = a"pln]

Answer: Q(z) = 21-a"z")
z—a

Example 7.6

Derive the z-transform of y[n] = na"uln].

Solution
We let x[n] = a"u[n]. From entry 4 in Table 7.2,

We now apply multiplication-by-n property, which states that

d

Zinx[n]} = -z = X(2)
But
d —az
ZEX(Z) “_a
Thus,
V(2) = Zinatulnl) = fza)z

Practice Problem 7.6 Determine the z-transform of y[n] = n?a"u[n].

az(z+a)
(z-a)

Answer:
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Example 7.7
Use the z-transform to find the convolution of the following two sequences:

x[n]=0,-2,1, 4] and hln]=[2, 0, 1,-3, 1]

Solution
We use Equation 7.4 to find the z-transform of x[n] and h[n].

X(z2)=1-2z"+7?%+47>

H(z)=2+0z"+2z2-322+7*

Applying the convolution property gives

=240z"+z2-322+2"
—477'4+0z72 -2z +6274 277"
+2272 4022+ =327 +7°
+877° +0z +427° -122 % + 477
=2-47"432%4322+82" —z° 11z + 477
From this, we obtain y[n] as
ylnl = 12, -4, 3, 3, 8, -1, =11, 4]

Practice Problem 7.7 Use the z-transform to find the convolution of these
sequences:

xlnl=[1, 1,11 and hln]=1[0,1,0.5, 1, 1.5]

Answer: [0, 1, 1.5, 2.5, 4, 3, 2.5, 1.5]

Example 7.8

Let the z-transform of a signal be

_ 7-0.75
z2(z=N(z+0.75)

Find the initial and final values.
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Solution
Applying the initial and final value theorems, we obtain

x[0] = lim X(z) = lim 22075
Z—® zw Z(Z —1)(2 + 075)
T 250 11-1/2)(1+0.75/2)

xloo] = lim 2= X(2) = Iim(

z-1 7 z->1

z-1 z-0.75
z z(z-N(z+0.75)

=lim

z-1

z-0.75 1-0.75 1
=2

; =_=0.1429
Zz+0.75) PO+0.75 7

Practice Problem 7.8 Obtain the initial and final values of the signal whose
z-transform is given by

1+2z27"

Xz)=— 122
. 1-1.6z7"+0.62""

Answer: 1, 7.5

Example 7.9

Find the transfer function H(z) = Y(z)/X(z) for the causal system described by the
following difference equation:

ylnl=3yln =1+ 4yln - 2] = x[n] + x[n - 3]
Solution
Applying linearity and time-shifting properties, we have
Y(2)-3z"Y(2)+427Y(2) = X(2) + 27 X(2)
or
Y1327+ 4z} = X1+ 27}
Thus,

Y(z) 1+273 B 7> +1
X(z) 1-3z"+4z2 72 -3722+4z

Practice Problem 7.9  Given the difference equation

yln+ 31+ 2yln+ 1+ ylnl = x[n + 2] - x[n]
Find the transfer function H(z).

72 -1

Answer: ((;)=—2
72 +2z+1




z-Transform 327

7.5 INVERSE z-TRANSFORM

The problem of finding the inverse z-transform is the problem of finding x[n] for a
given X(z). The direct way to do this is to evaluate the contour integral:

— L n—1
A= ci)X(z)z d (7.50)

where I is a closed contour that encloses the origin and includes all poles of X(z). I is
usually determined by the region of convergence of the summation in Equation 7.4.
It encircles all singularities in the ROC. This direct method of finding the inverse
transformation is computationally involved and will not be pursued further. We would
rather use two other methods: long division expansion and partial fraction expansion.

7.5.1 LoNG DivisioN ExpaNSION

To find the inverse z-transform of X(z), we expand X(z) = N(z)/D(z) in a power series
in z7! by using long division. The values of x[n] are taken as the coefficients of the
series expansion. The long division becomes tedious if more than few values are
needed. This major deficiency limits the usefulness of the long division approach.

Example 7.10

Use long division expansion to find x[n] given that

2_
X(z):fiz
zZ2+z+3

Solution
We carry out the long division as follows:

z'+ 0z%-323+32"

22+ 7+ 3)22—2

zZ2+ 1+ 3727
-3 + 377
-3 -3z°-97"
3z7+32%2+927°
327+ 327+ 97°

3z%+6z°-9z77*

Hence,

X(z2)=7z"-322 432"+
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We compare this with the basic definition of the z-transform in Equation 7.4, that is,

X(z) = Z Xnlz" = X014+ X[z + X222 + x[312 +---

n=0

Thus,

x[0]=0, x[1=1 x[2]=0, x[3]1=-3, x[4]=3,...

Practice Problem 7.10  Using long division expansion, find the inverse transform of

Answer: (0.8)"uln].

Example 7.11

Find the inverse z-transform of

Solution
This can be written as

X(z) = |og( j =—log(l—az™) (7.11.1)

1—az™

The Maclaurin series expansion for log (1 — u) is given by
il
log(l—=r)==>» —r" (7.11.2)
g1-1) Z .
Applying Equation 7.11.2 in Equation 7.11.1 with r = az™! leads to

X(z) = Z%a”z'” (711.3)
n=1

We obtain x[n] as the coefficients of the series in Equation 7.11.3.

x[n] = 1 a"uln-1]
n
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Practice Problem 7.11 By long division, find x[n] corresponding to

_z+1
zZ+2

Answer: d[n] — 8[n — 1] + 28[n — 2] — 48[n - 3] + - - -

7.5.2  PARTIAL FRACTION EXPANSION

We use partial fraction for finding the inverse z-transform in the same way we used it
to find the inverse Laplace transform in Section 3.4. In using partial fraction, a func-
tion X(z) that does not appear in the z-transform in Table 7.2 is expressed as a sum
of functions that are listed in the table. The inverse z-transform is then computed
term by term using the appropriate entries in Table 7.2. We may also need to use the
z-transform properties in Table 7.1. We will illustrate with examples for the cases of
simple poles, repeated poles, and complex poles.

Example 7.12

Find the signal corresponding to

4z

Xz)=——F———
(z+0(z-0.8)

Solution

This example is on simple poles. If we expand X(z) as

4z A B

+
(z+0(z-0.80 z+1 z-0.8

we will find out that the terms 1/(z + 1) and 1/(z — 0.8) are not in Table 7.2. Thus,
in order to get the inverse of X(z), we need some additional manipulation. If we
divide X(z) by z, we get

M:X](Z):$:i+ B
z (z+0(z-0.80 z+1 z-0.8
A=(z+X|_ =— -4 20
=1 7-08[,_, 0.2
4
B=(z-0.8)X| , =—- =—=2222
=08 741, 1.8
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Thus,

_ 20z + 2.22z7
z+1 z-0.8

X(2)
From Table 7.2, we obtain the inverse as
uln] = 20(=1" +2.22(0.8)"

Practice Problem 7.12 Find the inverse of

4z -1
(z=Nz-2)

Answer: —0.58[n]-3u[n] + 3.5(2)"uln]

Example 7.13

Find the inverse z-transform of the function

B z+1
(z-0.5)(z -1
Solution

This example is on repeated poles. We let

X(z) = X&) z+1 A, B €, D g

= = +
z  zZ(z=05)z-0* z z-05 z-1 (z-1?

We obtain the expansion coefficients as

z+1 1 _
A=2Xil2), o = (z-0.5)z-1?]_, (<0.5(-1)* 2
z+1 1.5
B=(z —0.5)X1(z)‘2:0.5 =L ” = m =
Delz-Mx(z)] =2 | 2 _y4

1 7(z-0.5)|,_, 10.5

To find C, we can select any appropriate value of z and substitute in Equation
7.13.1. If we choose z = 2, we obtain

wp XD ze1 A B C D
! z z(z-05z-0 z z-05 z-1 (z-1°

2+1 -2 12 C 4
=——+——+—+

2050 2 15 1 1
or 1=-1+8+C+4—>C=-10
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Thus,

12z 10z 4z
-+

X(z)=-2+
z-05 z-1 (z-1°

Taking the inverse z-transform of each term,

x[n] = =28[n]+{12(0.5)" =10 + 4n}uln]
Practice Problem 7.13 Obtain the inverse z-transform for the function

zZ—6

X = e —or

Answer: —1.58[n]—{5—4.5(2)n + 2n(2)n}uln]

Example 7.14

Find the signal corresponding to the z-transform

272 -3z

X&) = (z=N(z%-4z+5)

Solution

This is an example on complex poles. Setting z2 — 4z + 5 = (z - 2? -4 + 5 =
(z = 2)> =(j? = (z — 2— j)(z — 2 + ) reveals that there are complex poles at 2 + j. We
really do not need to know about these poles to find the inverse. We let

X(2) 2z7-3 A Bz+C
X1(Z):7:2—:7+27
z (z—=Wz"—-4z+5) z-1 z°-4z+5
or
2z-3 _ A(22 -4z + 5) +(Z—1)(BZ+C) (7'14'1)
(z-Nz*-4z+5) (z-1(z* -4z+5)

Setting the numerators on both sides equal
2z2-3=Alz> -4z +5)+B(z* - 2) +C(z-1)
Equating the coefficients
72:0=A+BorB=-A

z:2=-4A-B+C

Constant:—=3=5A-C
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Solving these gives A = -1/2, B =", and C = 1/2.
Thus,

L 2
X(z)= 922 o5 2 *2 (7.14.2)
z-1 z°—=4z+5

The inverse of the first term is —0.5u[n]. We find the inverse of the second term by
comparing with entries 14 and 15 in Table 7.2, namely,

2
z°—zacosQ
a"(cosQnuln]l & ——————
z°—2zacosQ+a

zasinQ

a"(sinQnuln] & —"—F"""T——
n] 72 —2zacosQ+a’

Set z22—4z + 5 = z2-2azcosQ + a’
. 2
We notice that a=+/5 and 2acosQ =4 — cosQ = i and consequently,

sinQ = and Q=0.4636.

-

Thus,

— 2_
_ O.52+0.5 2z 2z +0.5 ! 3z
z-1 z°—4z+5 z°—4z+5

X(2)
The inverse is
x[n] = 0.5{=1+(/5)" cos (0.4636n)+ 3(/5)" sin (0.4636n)} uln]
Practice Problem 7.14 Obtain the inverse z-transform of

2z

X(z2)=——"——
2) 72+47+8

Answer: (\/g)n sin (%] uln]

7.6 APPLICATIONS

The z-transform is fundamentally important to digital signal processing, digital
communications, and linear control systems. In this section, we consider the use of
the z-transform in the analysis of discrete-time linear systems. We will apply the
z-transform to two areas: linear difference equation and transfer function.
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7.6.1 LINEAR DIFFERENCE EQUATION

Most discrete-time systems of practical interest can be described by linear difference
equations. We can use the z-transform to solve the difference equation for n > 0. To
do this we first take the z-transform of the two sides of the difference equation. Next,
we solve algebraically the transformed difference equation. At this point, we can
evaluate Y(z) and invert it using Table 7.2 to determine y[n].

To obtain the complete solution requires that we know the input signal x[n]. For
Nth order difference equation, we must also know N initial conditions. Using the
initial conditions, we obtain the z-transform of the delayed output signals as follows:

Z{yn-11}=z""Y(2)+){-1]
Z{yin=2l} =Y (@) + 2 Hl-11+H-2] (7.51)
Z{n=31} =27°Y () + 2 7y 11+ 27 'y[-2]+y[-3]

In general,

Z{yln—-m]=z"Y(2)+ Zf'"Zy[—n]z" (7.52)

n=1

Similarly, the z-transforms of advanced output signals are

Z{y[n+1]}=zY(2) - 2y10]
Z{yn+2]}=2*Y (2) - °y0] - x{1] (7.53)
Z{y[n+31} =2V (2) - )01 - 2*y{1] - 23(2]

In general,

m—1

Z{y[n+ml=7"Y(z)- z’"z yinlz™ (7.54)

n=0

We will illustrate this with an example.

Example 7.15

A second-order discrete-time system is characterized by the difference equation

y[nl+0.2y[n —1-0.5y[n — 2] = x[n]+ x[n —1]

Find the complete solution for the initial conditions y[-1] = 1, y[-2] = 2 and an
input x[n] = ulnl.
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Solution
Taking the z-transform of each term in the difference equation yields

Y(z)+0.2 {Z’1Y(Z) + y[—1]} -0.5 {Z’ZY(Z) + 727 YT+ y[—2]} = X(2) +{z7'X(2) + x[-T}}

We should set x[-1] = 0 since u[n] = 0 for n < 0. Also,

Introducing the initial conditions for y[-1] and y[-2] leads to
YO{1+0.227-0.522} +0.2-0.52" = 1= X(2)(1+ 2z ) =1+ 2z /(-2

Yiz) = 08+ 0.5z +(1+z)/(1-2z") 0.8+0.52"'-0.827"-0.52" +1+ 2"
1+0.2z7' - 0.5z (1-z"Y1+0.2z7"-0.5z7%)

~1.822+0.77°-0.5z
(z-N(z*>+0.22-0.5)

We use partial fraction to obtain y[n].

Y(2) 1.822+0.7z-0.5 A B C
Yi(z)=—"= =4 +
z (z-=N(z+0.8140(z-0.6147) z-1 z+0.8141 z-0.6141

A= (2_1)3/1(2)‘ B :M =2.8569
2=l 1.8141x0.3859

~1.193-0.5699-0.5

B=z+ 0814, o =17 14014282

=0.0475

0.6788+0.4299-0.5
z=06141 " (_0.3859)(1.4282)

C=(z-0.614)Y,(2)| =-1.1044

Thus,

_2.8569z + 0.0475z 1.1044z

Y(z) -
z—1 z+0.8141 z-0.6141

By taking the inverse z-transform of each term, we finally obtain

y[n]=1{2.8569+0.0475(-0.8141)" —1.1044(0.6141)"}uln]
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Practice Problem 7.15 Use the z-transform to solve the difference equation

yInl+0.6yln —1] = xIn]

where
x[n] = 48[n - 1]
yl-1] = -2.

Answer: 6.6675[n]—5.4667(—0.6)"u[n]

7.6.2 TRANSFER FUNCTION

The transfer function plays an important role in the analysis of discrete-time linear
systems. In this section, we will define the discrete-time transfer function and how
to find the system impulse and step responses. We will also learn how to use the
transfer function to determine system performance characteristics such as stability
and frequency response.

The relationships between the system input x[r], output y[x], and impulse response
and their z-transforms are given in Equation 7.39, namely,

ylnl = x[n]* h[n] <> Y (2) = X(2)H(z) (7.55)

From this, we obtain the transfer function H(z) as

_Y@)

H(z) =
(2) X()

(7.56)

This implies that the transfer function is the ratio of the z-transforms of the out-
put and input. We obtain the transfer function by either transforming the difference
equation or transforming the system representation.

When the system input is a unit impulse d[n] (8[n]«>1), the output of the system is
equal to the transfer function H(z). Thus, the discrete-time system impulse response
is given by

hinl=Z"{H(2)} (7.57)

When the input x[r] is a unit step u[n] so that X(z) = z/(z — 1), the corresponding
output y[n] is called the step response.

When systems are interconnected, the rules that apply to continuous-time sys-
tems also apply to discrete-time systems. We handle block diagrams such as series,
parallel, and feedback interconnection in the same manner as for their corresponding
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Y(z)
> —

x[n)

FIGURE 7.3  Unit delay.

continuous-time systems in Section 2.7. For a unit delay, shown in Figure 7.3, the
input—output relationship is

ynl=xn-1] (7.58)
or
Y(Z) = ZiIX(Z) (7.59)

For the series connection, shown in Figure 7.4a, the overall transfer function is

H(z)=H\(2)H,(2) (7.60)

For the parallel connection, shown in Figure 7.4b, the overall transfer function is

H(z)=H,(2)+ H,(z) (7.61)

X(o)— Hy(d) —> Hy(2) > ()
(a)

> H1(Z)
X(z)_’ + Y(2)

+

> H,y(2)
(b)
X(2) + Hl(Z) . Y(z)

H,(2)

(c)

FIGURE 7.4 Transfer functions for (a) series connection, (b) parallel connection, and
(c) feedback connection.
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For the feedback interconnection, shown in Figure 7.4c, the overall transfer
function is
Y@ _  Hi(@@
X(z) 1+ H\(2)H1(2)

H(z)= (7.62)

System stability may be addressed in terms of the characteristic roots, the impulse
response, and the bounded-input-bounded-output (BIBO) criterion. It may also be
deduced from the system transfer function. The system is stable if 4[n] is absolutely
summable, that is,

Z| Hnl| < oo (1.63)

All the terms in A[n] are decaying exponentials. To achieve this, the magnitudes of
all the system poles of H(z) must be less than 1, that is, the poles are inside a unit
circle in the z-plane.

Example 7.16

Consider the a-filter, which is described by Figure 7.5. From the figure, it is evident that
ylnl+(1=a)yln =1 = axln]

Find H(z) and h[n]. You may take a = 0.2.

Solution
With a = 0.2,

y[nl+0.8yln -1 = 0.2x[n]
We take the z-transform of this to get
Y(2)+0.827'Y(2) = 0.2 X(2)

Y(2) 0.2 0.2z
H(z) =—== ==
X(z) 1+0.8z z+0.8

FIGURE 7.5 For Example 7.16.
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Taking inverse z-transform gives

hln] = 0.2(-0.8)"uln]
Practice Problem 7.16 Repeat the problem in Example 7.16 with

yln]=0.5y[n —1] = x[n]

z

, hin] = (0.5)" uln]
z-0.5

Answers: H(z) =

Example 7.17
A discrete-time system is described by the difference equation
y[n]—0.6y[n —1-0.05y[n — 2] = x[n] - x{n —1]

Find the impulse response.

Solution

Since there are not initial conditions, the z-transform of the difference equation is

Y(z)-0.6{z7Y(2)} —0.05{ z72Y(2)} = X(2) - {z'X(2)}

The transfer function is given by

Y(z) 1-z" 72—z
Hz) =~ = I 272
X(z) 1-0.6z"'-0.05z z°-0.6z-0.05

To find the impulse function, we apply partial fraction on H(z)

_H@©) z-1 z-1 A B

H](Z) = =— = = +
z z°-0.6z-0.05 (z-0.5(z-0.1 z-0.5 z-0.1
0.5-1
A=(z-05H\(2)| _, . = oso0g -
B=(z-0.0H(z) _, = (10;10‘;) —-1.8
Thus,
H(z) = — 1.25z 1.8z
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Taking the inverse z-transform of this yields

hln]=-1.25(0.5)"uln]—1.8(0.1)"uln]

339

Practice Problem 7.17 Find the impulse response of the discrete-time system

described by

y[n]*%y[nfﬂf%y[nfﬂ:x[nf1]+x[n—2]

Answer: —128[n -1+ ﬁ(ljn uln]— &(ljn uln]
7 \ 3 7 \ 4

7.7 COMPUTING WITH MATLAB®

In this section, we discuss how MATLAB can be used to do the following:

Find the z-transform of a discrete-time signal using the MATLAB com-
mand ztrans.

Determine the inverse z-transform using MATLAB command iztrans.
Determine the poles of a transfer function using MATLAB command roots
and evaluate the stability of the system.

Use the MATLAB commands dstep and filter to find the step response of

discrete-time linear system.

Example 7.18
Using MATLAB, find the z-transform of
x[nl = n uln]

Solution

The MATLAB script for doing this is
syms X X n z

X = n*heaviside(n);

X = ztrans (x)

The program returns

X =
z/ (2”2 - 2%z + 1)

which agrees with what we have in Table 7.2.

Practice Problem 7.18 Use MATLAB to find the z-transform of y[n] = n?uln]

2 +z

Answer: Y(z)=—= =
72’ -3722+3z-1
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Example 7.19

Given the function

. 6z+4
7" -3.52+3

Find the inverse z-transform x[n].

Solution

We can do this in two ways.

Method 1: Using the iztrans command, we have MATLAB script as follows.
syms X X n z

X = (6*%z +4)/(z"2 -3.5%z + 3);
X = iztrans (X)

MATLAB returns

X =
16*2”n - (52*(3/2)”"n)/3 + (4*kroneckerDelta(n, 0))/3

Method 2: We can also use the residue or residuez command, which carries out
partial-fraction expansion. We illustrate it in the following script.

num = [ 6 4]
den = [1 -3.5 3]
[r, p, k] = residuez(num, den)

MATLAB responds as follows (r = residues, r = poles, and k = direct terms).

r =
32
-26
p:
2.0000
1.5000
k =

[1

This implies that

32 26 32z 26z

X(z) = - = -
1-2z7" 1-15z" z-2 z-1.5

From this, we obtain the inverse z-transform as:

x[n] = 32(2)"uln]—25(1.5)"uln]
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Practice Problem 7.19 Use MATLAB to find the inverse z-transform of
_ z-2
72 +3z+2

Answer: x[n] = 3*(=1)" — 2*(=2)" —Kronecker Delta (n, 0)

Example 7.20

The transfer function of a system is given by

2z-3

Hz)=———F7+——
2 722-272-7-0.5

Determine whether the system is stable.

Solution
We only need to find the roots of the denominator to determine the system stability.

den = [1 -2 -1 -0.5];
r = roots(den)

MATLAB returns

r =
2.4837

-0.2418 + 0.37791
-0.2418 - 0.37791

The poles are located on the complex plane as shown in Figure 7.6. We notice
that the magnitude of the first pole (2.4847) is greater than one and therefore lies
outside the unit circle. (The other poles lie with the unit circle.) Hence, the system
is unstable.

Practice Problem 7.20  Determine the stability of a system whose transfer function is

2z-1
7)== 2
z°+0.5z°+0.52+0.5

Answer: Stable; all poles lie within the unit circle.

FIGURE 7.6 Pole locations for Example 7.20.
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Example 7.21
Obtain the unit step response of a discrete-time system whose transform is

3+z
Hz) = ——"—""—
722 -57+2

Solution

The MATLAB script is as follows. We use the MATLAB command filter in this
example, while the Practice Problem following this example uses dstep command.
Given the transfer function, the input and initial conditions, filter returns the system
output. The step response is shown in Figure 7.7.

num = [1 3];

den = [ 1 -5 2];

n=0:1:30;

x = [l*ones(size(n))]; % unit step input
y = filter (num, den, x);

% d = length(y);

$ n=0:1:d-1

plot(n,y);

xlabel (*Sample number n’) ;
yvlabel (‘step response y[n]’)

Practice Problem 7.21 Change one line of the MATLAB script for Example 7.21
toy = dstep (num, den).You may delete two lines before that statement and
add two lines commented after that statement. Plot your result.

Answer: See Figure 7.8.

14 % 10Y

12

10 +

Step response y[n]

0 1 L L L L
0 5 10 15 20 25

Sample number 7

FIGURE 7.7  Unit step response; for Example 7.21.
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6 X 1026'

Step response y[#n]
w

O 1 1 1 L L L L 1
0 5 10 15 20 25 30 35 40 45

Sample number 7

FIGURE 7.8 For Practice Problem 7.21.

7.8

1.

2.

SUMMARY

The z-transform is used for analyzing discrete-time signals just as its counter-
part Laplace transform is used for analyzing continuous-time signals.
The (unilateral) z-transform of a signal x[n] is defined as

X(2)= Zx[n]z’”
n=0

. The region of convergence of the z-transform consists of the values of z for X(z)

converges.

. The properties of the z-transform are presented in Table 7.1. Table 7.2 provides

the z-transform pairs of common signals.

. To find the inverse z-transform of X(z), we expand X(z) in partial fractions and

identify the inverse of each term using Table 7.2.

. Among the applications of the z-transform are the solution of difference equa-

tion and the system transfer function.

. The z-transform can be used to solve difference equation of a system with

initial conditions.

. The transfer function H(z) of a discrete-time system is

Y@
X(2)
where X(z) and Y(z) are, respectively, the z-transform of the input x[xn] and
output y[n].
The inverse z-transform of H(z) is the impulse response A[n].

H(z)=Z{h[n]}
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REVIEW QUESTIONS

7.1 The z-transform may be regarded as the Laplace transform in disguise.
(@) True, (b) False.

7.2 The z-transform of the sequence shown in Figure 7.9 is
@ 2z+z% () 227 + 77, (© 2z + 272, (d) 7! + 2772

7.3 The z-transform of d[n — 1] is
@ 1, (b) z, (c) z7!, (d) e?, (b) e~

7.4 The z-transform for u[n + 1] is

1 b 1 Z d 7>
Py Qe Yy

e+l
22 +3z+42

@)

7.5 Let X(2)=

The initial value x[0] is
@ 0, (b) 1/2, (©) 1, (d) oo.
7.6 Refer to the function X(2) in the previous Review Question. The final value
x[oo] is
(@ 0, (b) 172, (©) 1, (d) oo.
7.7  Given the difference equation

yinl+yln=11+yln-21=uln], y[-11=2, y-2]=1,

y[0] is
@ —-2,(b)-1,0©0,@ 1, ) 2.
7.8 Which MATLAB command is used for finding the inverse z-transform?
(a) ztrans, (b) invztrans, (c) iztrans, (d) filter, () dstep.
7.9 Which of these MATLAB command is used for determining the stability of a
system?
(@) freqz, (b) residue, (c) residuez, (d) roots.
7.10 The pole plot of a system is shown in Figure 7.10. The system is
(a) stable, (b) unstable, (c) marginally state.

Answers: 7.1a, 7.2c, 7.3¢c, 7.4d, 7.5a, 7.6a, 7.7a, 7.8¢c, 7.9d, 7.10a.

FIGURE 7.9 For Review Question 7.2.
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Im(z)
A

1
Unit circle
dy
X » Re(2)
1 \ y 1
-1

FIGURE 7.10 Pole locations for Review Question 7.10.

PROBLEMS

SECTIONS 7.2 AND 7.3—DEFINITION OF THE
Z-TRANSFORM AND REGION OF CONVERGENCE

7.1 Find the z-transform of the sequences shown in Figure 7.11.
7.2 Determine the z-transform of the signal in Figure 7.12.
7.3 Determine the condition for the following summations to converge.

) i@jz 2

n=

(b) i(;) o
n=1

7.4 Find the z-transform and the ROC for

x[n]=2"u[n]+ (;j u[n]

(@ (b)

FIGURE 7.11 For Problem 7.1.
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0| ———o
0| ————o
| ————e
| ———o
o ——o

FIGURE 7.12 For Problem 7.2.

7.5 Determine the z-transform and its ROC for

2 2
x[n] ——2(3) u[n]—(sj u[n]

SECTION 7.4—PROPERTIES OF THE Z-TRANSFORM

7.6  Find the z-transform of the following signals:
@ uln—m]
(b) na"uln]
(c) a"cos mtn uln]
7.7 Determine the z-transform of each of the following signals:
@) u[n] —uln - 1]
(b) a™ "' uln — 1]
() na" uln — 1]
7.8 Find the z-transform of each of the following sequences:

@ xln] =(1]2 +[—‘j" n=0.12...
2 3)° T

l ' n=0,1,2
(b) dn]=4l4) " = 777
0, n =negative

© x[n]= {(0-5)", 0<n<5s

0, otherwise

7.9 Find the z-transform of the following sequences:
(@) x[n] = na"cos(Q n)uln]
(b) x[n] = n*uln]
(c) x[n] = e"sin(n)u[n]

7.10 Obtain the z-transform of the following signals:

(a) x[n]:?{i) +4(—;j

(b) y[n] =1 - e
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7.11 Prove the following z-transform pairs:
2

@ (el =

(b) n°a"uln] < %

zasin Q)

2, .
¢) a (sinQn)u[n] <
© aX Juln] 22 =2zacosQ+a’

712 Show that Z{nx[n]} =z di(l @)
z
7.13 Assuming that sequence x[n] is real-valued, show that X(z) = X* (z*).

7.14 A discrete-time signal x[n] = Acos (€2n) has the z-transform as

4z(z—0.8)
X(z)= 220
@ 22 —-1.6z+1

Compute the values of A and Q.
7.15 Given that x[n] = 3"u[n], find the z-transform of

yln] =nx[n]+ x[n—1u[n—1]+ x[n+ 1u[n +1]

7.16 Determine the initial values of the signals whose z-transforms are given in
Problem 7.24.

7.17 Find the initial value in each of the cases in Problem 7.27.

7.18 Find the initial and final values of x[n] for each of the following cases:

@) X(Z)=2[Z_éj
)

2
z7+1
X(z)=——"—
(b) X(2) 2 +2742
7.19 The z-transform of a discrete-time signal x[n] is

z-2

X(7) =
@ z2(z-1)

Calculate x[0], x[1], and x[107].
7.20 The z-transform of a discrete-time signal is

27

X(z)=— 2%
@ 22 +3z+1
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Find the z-transform of the following signals:
@ yln] = x[n = 1uln - 1]
(b) y[n]= sin(rn/4) x[n]
© yln] = n"x[n]
(d) yln] = 2x[n]*x[n]
7.21 Using the z-transform, determine the convolution of these sequences:

x[n]=[1, -1, 3,2], Ahln]l=[L0,2,1, =3].

7.22 Using the convolution property, find the z-transform of x[n], where

x[n]= Sin(Tj u[n]*uln]

SECTION 7.5—INVERSE Z-TRANSFORM

7.23 Find the inverse z-transform of
1

R B
6 6
Z
b X, =————
%= =0
2
77-8
© X3(2)=——"5—7—
@D
7.24 Find the inverse z-transform of the following functions:
2z
X __ =
@ X@=5""
(b) Y(Z)zﬂ
(z+D(z-1
4z
H =
© H@ (Z+z+1)(z+1/2)

7.25 Obtain the inverse z-transform of

2
X(2)= z-+2z-10
@) (z—=D(z+2)(z+3)

7.26 The z-transform of x[n] is given by

2z+1

X __ =
@ (z—=D(z+1)

(a) Find the final value x[co].
(b) Determine the inverse z-transform of X(z) and check your result in part (a).
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7.27 Invert each of the following z-transform:

@ XQ) =1 5
-1
(b) Xx(2) = Iz

1-0.8z7" +0.6477>

7.28 Use long division to find the inverse of

z7—2

X()=—""+
@ 1—z+7

SECTION 7.6—APPLICATIONS
7.29 A discrete-time system is described by

y[n+2]+y[n+1]+0.36y[n] =0, y[0]=2, y[l]=1.

Find the response y[n].
7.30 The difference equation for a system is

yn]+6yln—1]1+15y[n—-2]=0, y[-2]=0, y[-1]=1.

Find y[n].
7.31 Using the z-transform, solve the following difference equation:

yin+1]-2y[n]=(1.5)", yl0]=1.
7.32 Find the transfer function of the discrete-time system represented by
y[n+2]+0.5y[n+1]+ y[n] = x[n+ 1]+ 2x[n]
7.33 Obtain the complete response of the system represented by
yn]+ %y[n —-1]+ éy[n —2]=u[n], y[-2]1=0, y[-1]=1

7.34 A digital filter has the impulse response

h[n]= (;j uln—1]

Find the step response of the filter.
7.34 A discrete-time linear system has impulse response

B[n]=2+3(0.6)" —5(-0.8)"

Determine the transfer function.
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7.36 The transfer function of a discrete-time system is

1+27"
H(z)=——
() 1_Z—1+Z—2

Find the system response y[n] when the input is a unit step function u[n].

7.37 Find the z-transform of the output of the system shown in Figure 7.13.

7.38 Determine the transfer function of the feedback system represented in
Figure 7.14.

7.39 Determine the overall transfer function of the system shown in Figure 7.15. Let

h[n]=08[n]+8[n—1], hln]=nuln], hln]= [;) u[n]

7.40 A discrete-time linear system is shown in Figure 7.16.
(a) Find the transfer function H(z) of the system.
(b) Find the difference equation that describes the system.

S[n +2] 4;@ » J[n+3]
EpiE

FIGURE 7.13 For Problem 7.37.

Xz  + _ Hy(2) , V(@)
Hz(z)
FIGURE 7.14 For Problem 7.38.
hyln]
L

FIGURE 7.15 For Problem 7.39.
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x[n] » y[n]

FIGURE 7.16 For Problem 7.40.

7.41 Find the response of a system with a transfer function

z—-0.6

H(z)=——
(z+0.2)(z—0.8)

and an input x[n] given by
(@ x[n] = uln]
(b) x[n] = 2"uln]

7.42 A discrete-time system has input x[n] = 8[n] + 8[n — 1] and output y[n] = 8[n] +
8[n — 1] + 8[n — 3]. Find H(z) and h[n].

7.43 Obtain the impulse and step responses of the discrete-time system with trans-
fer function

0.8z

H(z)=——°¢
@ (z-0.6)(z-2)

SecTiON 7.7—CoMPUTING WITH MATLAB®

7.44 Use MATLAB to find the z-transform of the following signals:
(@ x[n] = (0.8)" u[n]
(b) x[n] = n(0.6)" uln]

7.45 Use MATLAB to find the inverse z-transform of

Z
z—-0.6

X(z)=

7.46 A linear discrete-time system is represented by the transfer function

z+1
H)=———"+——
@ 24+272+743

Use MATLAB to plot the step response of the system.
7.47 Determine the poles and zeros of the transfer function

22 +62+2
43z +4z+10

H(z)=
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7.48 The z-transform of a system is

22 -0.62+0.2z+1

X(2)=
@ 7 +0.5272 -7 +0.5z+1

Plot the locations of the poles and zeros of X(z).
7.49 Determine the stability of the systems represented by the following transfer

function:

2 +3272+z-1

H =
(= 1257 4052 0375202

7.50 Check the stability of a system described by the following transfer function:

722722 +6z7+1

H =
@ =27 +572—z+4
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Appendix A: Mathematical
Formulas

This appendix—by no means exhaustive—serves as a handy reference. It does con-
tain all the formulas needed to solve problems in this book.

A.1  QUADRATIC FORMULAS

The roots of the quadratic equation ax? + bx + ¢ =0

—b++/b* —4dac

2a

X, Xy =

A.2  TRIGONOMETRIC IDENTITIES

sin(—x) =—sinx

COS(—X) =COSx

355
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cos® x+sin’ x =1

a b c

— = =— (law of sines)
sinA sinB sinC

a* =b>+c¢*—2bccos A (law of cosines)
1
tan 5 (A-B)

=4 _lbz (law of tangents)

tan%(A+B) a+

sin(xiy) =sinxcosy+tcosxsiny
cos(xiy) =COosXxCcosyFsinxsiny

tan(x+y)— tan x f tan y
a I Ftanxtany

2sin xsiny :cos(x—y)—cos(x+y)
2sinxcosy = sin(x+y)—sin(x—y)

2cosxcosy = cos(x+y)—cos(x—y)

sin2x = 2sin xcos x
2 <2 2 =2
cos2x=cos" x—sin“x=2cos" x—1=1-2sin" x

2tan x
tan2x = ———
1-tan” x
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sin® x = %(1 —cos 2x)

cos’ x = %(1 +cos Zx)

acosx+bsinx:Kcos(x+9), where K =+a?>+b* and O:tan'[_b]
a

e =cosx+ jsinx (Euler’s formula)

e e

cosx=———
2

. e —e
sinx = -
2j

1rad =57.296°

A.3 HYPERBOLIC FUNCTIONS

sinh x = %(ex —e’x)

coshx = %(e‘ + e”‘)

sinh x
tanhx=——
cosh x
cothx =
tanh x
1
cschx =—
sinh x
1
sechx =

cosh x
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sinh (x + y) =sinhxcosh y+coshxsinhy
cosh(x + y) =coshxcoshytsinhxsinhy

sinh (x + y)

tanh(xiy) = m

A.4 DERIVATIVES
If U= U(x), V= V(x), and a = constant,

i(aU):ad—U
dx dx
i(Uv)_Udl le
dx dx dx
dUu dv
V—-U—
da(u __dx dx
dx\V v?

i(aU):aUlnadU
dx dx
d (o) dU
dx( )_ dx
i(sinU)zcosUd—U
dx dx

i(cosU) :—sinUd—U
dx dx

d 1 dU
—tanU = ———
dx cos“U dx
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A.5 INDEFINITE INTEGRALS
If U= U(x), V= V(x), and a = constant,

J.adx:ax+C

J.UdV =UV - J VdU (integration by parts)

n+l

IU”dUz +C, n=#l

n+l1

~|‘d—U:1nU+C
U

. av
a’dU=——+C, a>0,a=1
J Ina

1
e“dx=—e"+C
J a

~ ax

xe™dx =
J a

(ax—1)+C

2

j‘x2e‘”dx = e—S(GLZ)c2 —2ax+ 2) +C
a

J-lnxdx=xlnx—x+C

. 1
~[sma)cd)c =——cosax+C
a

1.
Icosaxdx =—sinax+C
a

x sin2ax

Isinz axdx =—— +C
2 da

359
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5 x  sin2ax
cos” axdx = —+
2 da

+C

. 1, .

Ixsmaxdx = —z(smax—axcosax)JrC

a
1 .

xcosaxdx = —z(cos ax + axsin ax)+ C
a
. 1 .

sz sin axdx = —3(2ax sinax + 2 cos ax — a*x” cos ax) +C
a

1
3

I x2 cosaxdx =
a

(Zaxcosax —2sinax+a’x*sin ax) +C

ax

ﬁ(asinbx—bcosbx)-i-C

J'e‘” sin bxdx =
a“+b

ax

J‘e‘” cosbxdx = ﬁ(acosbx+bsinbx)+c
a +b

X
+C, a*#b?

2(a-b) +b)

. cos(a—b)x cos(a+b)x s

jsmaxcosbxdxz— — +C, a“ #b
2(a—b) 2(a+b)

Icosaxcosbxdx: sin(a—b)x+sin(a+b)x+c’ a b’
2(a—b) (a b)
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dx 1. . x
J. ——=—tan = +C
a+x° a a

2

x“dx X

J. S =x—atan”' = +C
a’ +x a

dx 1 X 1 x
s=—| 5 5 +—tan” = |+C
(a2+x2) 2a°\ x"+a” a a

A.6  DEFINITE INTEGRALS

If m and n are integers,

2n
J.sinax dx=0

0
2n
Icosax dx=0
0

T 1y

. T
Ismz ax dx = J.cosz axdx = —
2
0

0

T T[
Isin mx sin nxdx :I cosmxcosnxdx=0, m#n
0 0

0, m+n=even

g
I sinmxcosnxdx =4 2m
0

R m+n=0dd
m —n
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2n T
. . . . 0, m=#n
sin mx sin nxdx = | sin mx sin nxdx =
T, m#n
0 -1
T
—, a>0
o 2
sin ax
J dx =10, a=0
X
0 T
—E, a<0

8

@ i
s~ x T
A==
2

o0
( cosbx T _
s dx=—e" a>0,b>0
Jx“+a 2a
0

o0
( xsinbx T _
ﬁdx:—e”b, a>0,b>0
J x“+a 2

0

Isin cxdx = Isin xdx = %
0 0

T 9 1 1Y
.2 _ .2 _ 2 _ 2 _ Y _ .
sin” nxdx =| sin” xdx =| cos” nxdx =| cos” xdx —5, n = an integer

0 0 0 0

g kg
I sin mx sin nxdx =I cosmxcosnxdx =0, m # n,m,n integers

0 0

I 2m
. _ 2 2 9’
J‘sm mxcosnxdx =< m" —n

0 0, m+n=even

m+n=odd
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J. eijzntxdx — B(I)

sz"e"“xzdx = I3 ;+1(2nn_1)\/7

0

0
|
2n+1_—ax? n:
Ix '”e @ d)C:W, a>0
a
0

A.7 LI"HOPITAL'S RULE
If (0) = 0 = h(0), then

fim £ _ i £
=0 b(x) x-0 h'(x)

where the prime indicates differentiation.

A.8 TAYLOR AND MACLAURIN SERIES

7(x) =f(0)+%f’(0)+%f”(0)+m

where the prime indicates differentiation.
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A.9 POWER SERIES

. 2ox x"
e =l+x+—+—+-+—+
2! 3! n!
3 5 7
. X X
Snx=x——+———+--
3t 517

2 x4 x6 x8
cosx=l-—+—-"—+——-..

21 41 6! 8!

X 2x 17x
tanx=x+—+—+
3 15 315

(1+x)n :1+nx+n(nzjl)x2+n(n_g)'(n_z)x3+...+(2jxk+...+x"

~1+nx, ‘x‘<1

L:1+x+)c2+x3+--~, ¥ <1
1-x

22
e 1 1.3 1-3-5
0(x)= (1_2+)C4_ G +j
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A.10 SUMS

Zk:%N(N+l)

N
k=1

N
218 - éN(N +1D@2N +1)
k=1

N

Zk3 =%N2(N+1)2

N N+l
a -1
E at = 1 a#l
k=0 a-=
N N+ M
a’—a
Zak =—— a=#l
Py a—1

N
Z(N]aNkbk =(a+b)", where [N] S L
k k)T (N=k)k!

k=0

A1 LOGARITHMIC IDENTITIES
logxy =logx+logy
logi =logx—logy

Yy

logx" =nlogx
log;o x =logx (common logarithm)

log.x =1nx (natural logarithm)
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A.12 EXPONENTIAL IDENTITIES

2 3 4
. X X
e =l+x+—+—+—+---
20 31 41
where e =2.7182
e‘e’ =
(ex )1=enX
Ine* =x

A.13  APPROXIMATIONS

If Ixl < 1,

(I£x)" ~1+nx

e ~1+x

In(1+x) >~ x

sinx _

sinx=x or lim 1

=0  x

cosx~1

tanx >~ x



Appendix B: Complex
Numbers

The ability to handle complex numbers is important in signals and systems. Although
calculators and computer software packages, such as MATLAB®, are now available
to manipulate complex numbers, it is advisable that students be familiar with how to
handle them by hand.

B.1 REPRESENTATION OF COMPLEX NUMBERS

A complex number z may be written in rectangular form as
=X+ Jy (Bl)

where j =+/—1; x is the real part of z while y is the imaginary part, that is,
x=Re(z), y=Im(z) (B.2)

The complex number z is shown plotted in the complex plane in Figure B.1. Since

j=~-1

1 .

- =-J

J

ji=-1

P=iit=—j (B.3)
jt=itgt=1

P=igt=i
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]y ...........

Re

U

FIGURE B.1  Graphical representation of a complex number.

A second way of representing the complex number z is by specifying its magni-
tude r and angle 0 it makes with the real axis, as shown in Figure B.1. This is known
as the polar form. It is given by

2=z £0=rz6 (B.4)

where
r=4yx*+y%, 0=tan"'Y (B.5)

X
or

x=rcosb, y=rsin0 (B.6)

that is,
z=Xx+jy=rZ0=rcos0+ jrsin0 (B.7)

In converting from rectangular to polar form using Equation B.5, we must exercise
care in determining the correct value of 6. These are the four possibilities:

z=x+jy, O=tan" b (First quadrant)

X

z=—x+jy, 0=180°—tan"'?Y (Second quadrant)
x
(B.8)
z=—x—jy, 0=180°+tan"’ b (Third quadrant)
x

z=x-jy, 0=360°—tan"’ 2 (Fourth quadrant)
X

assuming that x and y are positive.
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The third way of representing the complex number x is the exponential form:
z=re” (B.9)

This is almost the same as the polar form, because we use the same magnitude r and
the angle 6.
The three forms of representing a complex number are summarized as follows:

z=x+jy, (x=rcos6,y=rsin0) Rectangular form

7=r/0, (r:\/x2+y2,9:tan] yj Polar form
x

(B.10)

z=re, (r =x*+y*,0=tan y) Exponential form
X

B.2 MATHEMATICAL OPERATIONS

Two complex numbers z; = x, +jy, and z, = x, + jy, are equal if and only, their real
and imaginary parts are equal, that is,

X1 =X, Vi1=)2 (B.11)
The complex conjugate of the complex number z = x + jy is given as:
F=x—jy=rl-0=re” (B.12)

Thus, the complex conjugate of a complex number is found by replacing every j by —j.
Given two complex numbers z;, = x, + jy, = r,£0, and z, = x, + jy, = r,£6,, their
sum is

2+ 2 = +x)+ jn+y2) (B.13)
and their difference is

21— 2= —x)+ j1— ) (B.14)

While it is more convenient to perform addition and subtraction of complex num-
bers in rectangular form, the product and quotient of two complex numbers are best
done in polar or exponential form. For their product,

22, =1 Z0, +0, (B.15)
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Alternatively, using the rectangular form

222 = (0 + jyD)(x; + jy2)

= (XX —y1y2) + j(ay, + x3) (B.16)
For their quotient,
a_h e -0, (B.17)
L n

Alternatively, using the rectangular form as,

4 nt (B.18)
2 X+

we rationalize the denominator by multiplying both the numerator and denominator
by Z;k .

a_ (21 + jy)(xa — jiya) Ny, 0¥ T XY (B.19)
2 (a+jy2)(x = jy2) X34y X3+

B.3 EULER’S FORMULA

Euler’s formula is an important result in complex variables. We derive it from the
series expansion of e*, cos, and sinf. We know that

2 3 4
e =l+x+—+—+"—+--- (B.20)
21 31 41
Replacing x by jO gives
. 02 0 0
9 _ 00— — — 74+ ...
e’ =1+j0 RS TRPTA (B.21)
Also,
2 4 6
cos=1-0,9 0 (B.22)
2! 4! 6!
3 5 7
sino=0-9 ;&0 (B.23)
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so that

] 62 3 64 5
c0s6+]sm9=1+]6—2—!—]§+4T+J§—-~ (B.24)

Comparing Equations B.21 and B.24, we conclude that

e’ =cosO+ jsin® (B.25)

This is known as Euler’s formula. The exponential form of representing a com-
plex number as in Equation B.9 is based on Euler’s formula. From Equation B.25,
notice that

|cos€) =Re(e”), sinf= Im(eje)| (B.26)

and that
‘eje‘ =+/cos?0+sin’ 0 =1 (B.27)
Replacing 0 by —0 in Equation B.25 gives
e =cosH—jsin® (B.28)

Adding Equations B.25 and B.28 yields

Lo e
cosG—E(e’ +e’ ) (B.29)

Subtracting Equation B.28 from Equation B.25 yields

. 1/ i
sinf =27 (e =e") (B.30)

The following identities are useful in dealing with complex numbers. If z = x + jy =
120, then

@ =l =2yt =1 (B.31)
Jz = \Jx+jy =re®? =Jr2012 (B.32)

7" =(x+jy)" =r"4Zn0 =r"(cosnb + jsinnb) (B.33)
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=+ )" =r""20m+ 2nkin, k=0,1,2,...,n—1 (B.34)
In(re”®) =Inr+Ine’® =Inr+ jO+ j2mk (k = integer) (B.35)
&M =—1
eijZT[ 1
o _ (B.36)
—jm/2 — _j

Re(e(“”“’)’) = Re(e‘”ejw’) = ¢* coswt
(B.37)
Im (e(‘“j‘”)’) = Im(e‘”ef‘”’) = e sin wt

MATLAB handles complex numbers quite easily as real numbers.

Example B.1

Evaluate the complex numbers:
_jB=jAT
(=1+j6)2+ j)?

(b) z2= [4£30° +2-j+ ()e/'vr/4:|‘/2

@ z=

Solution

(@ This can be solved in two ways: working with z in rectangular form or
polar form.

Method 1 (working in rectangular form):

7374
Z5Z6

Let z; =

where

Z3 :j
7, =(3— j4)* = the complex conjugate of (3 j4) = 3+ j4)
zs =1+ j6

Ze=Q2+ ) =4+j4-1=3+j4
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Hence,

jG+j4) j3—4
(-1+j6)3+ j4) -3—j4+/18-24
_ —4+j3
=27+ j14

Multiplying and dividing by —27 — j14 (rationalization), we have

(~4+/3)(27-j14) 15025
(=27 + j14)(=27 — j14)  27* +147

=
=0.1622-j0.027 = 0.1644/ —9.46°
Method 2 (working in polar form):
73 = j =1/90°
74 =(3-j4)*=(5£-53.139" =5/53.13°
75 = (=14 j6) = +/37.£99.46°
Ze=(2+))7 = (J§426.56°)2 =5/53.13°

Hence,

oz 029096453139 1 000 oo o
7574 (\/ﬁ499.46°)(5453.13°) 37

=0.16442-9.46°=0.1622-,0.027

(b) Let
7z; =4/£30° =4cos30°+ j4sin30° = 3.464 + 2
Zg=2—]
7y = 6e/™* = 605 45° + j65iN45° = 4.243 + j4.243
Then,

Zy = [Z7 + Zg +Zg]1/2

=[3.464+j2+2—j+4.243+j4.243]"

=(9.707 + j5.243)"% = (11.032£28.374°)""
=3.32/14.19°

373
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Practice Problem B.1 Evaluate the following complex numbers:

2
@ | L
2—j

(b) 6£30° + j5-3 + ej*s°

Answer: (a) 0.24 +0.32, (b) 2.03 + /8.707




Appendix C: Introduction
to MATLAB®

MATLAB® has become a powerful tool of technical professionals worldwide. The
term MATLAB is an abbreviation for MATrix LABoratory implying that MATLAB
is a computational tool that employs matrices and vectors/arrays to carry out numeri-
cal analysis, signal processing, and scientific visualization tasks. Because MATLAB
uses matrices as its fundamental building blocks, one can write mathematical
expressions involving matrices just as easily as one would on paper. MATLAB is
available for Macintosh, Unix, and Windows operating systems. A student version of
MATLAB is available for PCs. A copy of MATLAB can be obtained from

The Mathworks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098

Phone: (508) 647-7000

Website: http://www.mathworks.com

A brief introduction on MATLAB is presented in this appendix. What is presented
is sufficient for solving problems in this book. Other information on MATLAB
required in this book is provided on a chapter-by-chapter basis as needed. Additional
information about MATLAB can be found in MATLAB books and obtained from
the online help. The best way to learn MATLAB is to work with it after one has
learned the basics.

C.1 MATLAB® FUNDAMENTALS

The Command window is the primary area where you interact with MATLAB. A lit-
tle later, we learn how to use the text editor to create M-files, which allow executing
sequences of commands. For now, we focus on how to work in Command window.
We first learn how to use MATLAB as a calculator. We do so by using the algebraic
operators in Table C.1.

To begin to use MATLAB, we use these operators. Type commands to MATLAB
prompt “>>" in the Command window (correct any mistakes by backspacing) and
press the <Enter> key. For example,

> a =2; b=4; ¢ = —6;
> dat = b®2 — 4*a*c
dat =

64
> e=sqgrt (dat) /10
e =

0.8000
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TABLE C.1

Basic Operations

Operation MATLAB Formula
Addition a+b

Division (right) a/b (means a+b)
Division (left) a\b (means b+a)
Multiplication a*b

Power a’b

Subtraction a—b

The first command assigns the values 2, 4, and —6 to the variables a, b, and c,
respectively. MATLAB does not respond because this line ends with a colon. The
second command sets dat to b*> — 4ac and MATLAB returns the answer as 64. Finally,
the third line sets e equal to the square root of dat and divides by 10. MATLAB
prints the answer as 0.8. As function sgrt is used here, other mathematical functions
listed in Table C.2 can be used. Table C.2 provides just a small sample of MATLAB
functions. Others can be obtained from the online help. To get help, type

> help
TABLE C.2
Typical Elementary Math Functions
Function Remark
abs(x) Absolute value or complex magnitude of x

acos, acosh(x)
acot, acoth (x)
angle(x)

asin, asinh(x)
atan, atanh(x)
conj(x)

cos, cosh(x)
cot, coth(x)
exp(x)

fix

imag(x)

log (x)
log2(x)
log10(x)

real (x)

sin, sinh(x)
sqrt (x)

tan, tanh

Inverse cosine and inverse hyperbolic cosine of x in radians
Inverse cotangent and inverse hyperbolic cotangent of x in radians
Phase angle (in radian) of a complex number x

Inverse sine and inverse hyperbolic sine of x in radians
Inverse tangent and inverse hyperbolic tangent of x in radians
Complex conjugate of x

Cosine and hyperbolic cosine of x in radian

Cotangent and hyperbolic cotangent of x in radian
Exponential of x

Round toward zero

Imaginary part of a complex number x

Natural logarithm of x

Logarithm of x to base 2

Common logarithms (base 10) of x

Real part of a complex number x

Sine and hyperbolic sine of x in radian

Square root of x

Tangent and hyperbolic tangent of x in radian
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[a long list of topics come up]
and for a specific topic, type the command name. For example, to get help on log
to base 2, type

> help log2

[a help message on the log function follows]
Note that MATLAB is case sensitive so that sin(a) is not the same as sin(A).
Try the following examples:

> 3" (log 10(25.6))
>>y=2*sin[£;lj
>>exp(y+4—1)

In addition to operating on mathematical functions, MATLAB easily allows one to
work with vectors and matrices. A vector (or array) is a special matrix with one row
or one column. For example,

>a=[1 -3 6 10 -8 11 14];

is arow vector. Defining a matrix is similar to defining a vector. For example, a 3 x 3
matrix can be entered as

>A=[1 2 3 4 5 6 7 8 9]

or as

In addition to the arithmetic operations that can be performed on a matrix, the opera-
tions in Table C.3 can be implemented.

TABLE C.3

Matrix Operations

Operation Remark

A Finds the transpose of matrix A

det(A) Evaluates the determinant of matrix A
inv(A) Calculates the inverse of matrix A
eig(A) Determines the eigenvalues of matrix A
diag(A) Finds the diagonal elements of matrix A

expm(A) Exponential of matrix A
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Using the operations in Table C.3, we can manipulate matrices as follows:

> B=2'
1 4 7
B=2
3
> C=A+B
2 6
C=6 10
10 14

10
14
18

> D=A"3-B*_C

372 432 492
D =948 1131 1314
1524 1830 2136

>e=[1 2

1
e =
3 4
> f =det(e)
f=-2

> g=inv (e)
_=2.0000
97 1.5000

> H=eig (g)
_ —2.6861
© 0.1861

1.0000
—-0.5000

Note that not all matrices can be inverted. A matrix can be inverted if and only if
its determinant is nonzero. Special matrices, variables, and constants are listed in

Table C.4. For example, type

> eye(3)
1 0
ans=0 1
0 O

to get a 3 x 3 identity matrix.
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TABLE C.4

Special Matrices, Variables, and Constants
Matrix/Variable/Constant Remark

eye Identity matrix

ones An array of ones

ZEros An array of zeros

iorj Imaginary unit or sqrt(—1)
pi 3.142

NaN Not a number

inf Infinity

eps A very small number, 2.2e—16
rand Random element

C.2 USING MATLAB® TO PLOT

To plot using MATLAB is easy. For two-dimensional plot, use the plot command
with two arguments as

>plot (xdata, ydata)

where xdata and ydata are vectors of the same length containing the data to be
plotted.

For example, suppose we want to plot y = 10*sin(2*pi*x) from 0 to 5*pi, we will
proceed with the following commands:

> x = 0:pi/100:5*pi; % X 1s a vector, 0 <= X <= 5*pi, increments of
pi/100
> y = 10*sin(2*pi*x); create a vector y

> plot(x, y); % create the plot

With this, MATLAB responds with the plot in Figure C.1

MATLAB will let you graph multiple plots together and distinguish with differ-
ent colors.

This is obtained with the command plot(xdata, ydata, “color”), where
the color is indicated by using a character string from the options listed in Table C.5.

For example,

> plot(x1l, yl, ‘r’, x2,y2, ‘b’, x3,y3, '‘--7)

will graph data (x1,y1) in red, data (x2,y2) in blue, and data (x3,y3) in dashed line all
on the same plot.
MATLAB also allows for logarithm scaling. Rather that the plot command, we use

loglog log(y) versus log(x)
semilogx y versus log(x)
semilogy log(y) versus x
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REBRNEE

FIGURE C.1 MATLAB plot of y = 10*sin(2*pi*x).

TABLE C.5

Various Color and Line Types

y Yellow . Point

m Magenta o Circle

c Cyan X x-mark

T Red + Plus

g Green - Solid

b Blue * Star

w White : Dotted

k Black - Dashdot
- Dashed

Three-dimensional plots are drawn using the functions mesh and meshdom (mesh
domain). For example, to draw the graph of z = x* exp(—x"2—y”2) over the domain
—1 <x, y <1, we type the following commands:

>
>
>
>
>

Yy
[x

= —=1:.1:1;
= XX;
.yl = meshgrid(xx,yy) ;

z=x.*exp (-x.72 -y."2);
mesh(z) ;

(The dot symbol used in x. and y. allows element-by-element multiplication.) The
result is shown in Figure C.2.
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FIGURE C.2 A three-dimensional plot.

TABLE C.6

Other Plotting Commands

Command Comments
bar(x,y) A bar graph

contour (z) A contour plot

errorbar (x,y,1,u) A plot with error bars

hist (x) A histogram of the data
plot3(x,v,z) A three-dimensional version of plot()
polar(r, angle) A polar coordinate plot
stairs(x,y) A stairstep plot

stem(n, x) Plots the data sequence as stems
subplot (m,n, p) Multiple (m-by-n) plots per window
surf (x,y,x,¢) A plot of 3D colored surface.

Other plotting commands in MATLAB are listed in Table C.6. The help com-
mand can be used to find out how each of these is used.

C.3 PROGRAMMING WITH MATLAB®

So far MATLAB has been used as a calculator, and you can also use MATLAB to
create your own program. The command line editing in MATLAB can be inconve-
nient if one has several lines to execute. To avoid this problem, one creates a program,
which is a sequence of statements to be executed. If you are in Command window,
click File/New/M-files to open a new file in the MATLAB Editor/Debugger
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or simple text editor. Type the program and save the program in a file with an
extension.m, say filename.m; it is for this reason it is called an M-file. Once
the program is saved as an M-file, exit the Debugger window. You are now back in
Command window. Type the file without the extension.m to get results. For example,
the plot that was made above can be improved by adding title and labels and typed
as an M-files called examplel.m.

X = 0:pi/100:5%pi; % X 1s a vector, 0 <= x <= 5%*pi,
increments of pi/100

y = 10*sin(2*pi*x) ;

plot (x,y) ;

xlabel (“*x (in radians)”);

ylabel (“10*sin (2*pi*x) ") ;

title (“A sine function”) ;

create a vector y
create the plot
label the x-axis
label the y-axis
title the plot
add grid

o o° o o° o° oP

grid

Once it is saved as examplel.m, we exit text editor, and type
> examplel

in the Command window and hit <Enter> to obtain the result shown in Figure C.3.
To allow flow control in a program, certain relational and logical operators are
necessary. They are shown in Table C.7. Perhaps, the most commonly used flow

A sine function

O

10*sin(2*pi*x)
o

-4
-6
-8
» ARERERAR
0 2 4 6 8 10 12 14 16

x (in radians)

FIGURE C.3 MATLAB plot of y = 10*sin(2*pi*x) with title and labels.
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TABLE C.7

Relational and Logical Operators
Operator Remark

< Less than

< Less than or equal

> Greater than

> Greater than or equal
== Equal

~= Not equal

& And

| Or

~ Not

control statements are for and if. The for statement is used to create a loop or a
repetitive procedure and has the general form:

for x = array
[commands]
end

The if statement is used when certain conditions need to be met before an expres-
sion is executed. It has the general form:

if expression

[commands if expression is True]
else

[commands if expression is False]
end

For example, suppose we have an array y(x) and we want to determine the minimum
value of y and its corresponding index x. This can be done by creating an M-file as
shown as follows.

oe

example2.m
This program finds the minimum y value and its corresponding

oe

x index
x=[123 456 7 89 10]; %the nth term in y
y =[39 15810 -2 4 12 5];
minl = y(1);
for k=1:10
min2=y (k) ;

)
if (min2 < minl)
minl = min2;
xo = x(k);
else
minl = minl;
end
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end
diary
minl, xo
diary off

Note the use of for and 1 f statements. When this program is saved as example2.m,
we execute it in the Command window and obtain the minimum value of y as —2 and
the corresponding value of x as 7, as expected.

> example2
minl =

-2
X0 =

7

If we are not interested in the corresponding index, we could do the same thing using
the command

> min(y)

The following tips are helpful in working effectively with MATLAB:

¢ Comment your M-file by adding lines beginning with a % character.

e To suppress output, end each command with a semicolon (;), you may
remove the semicolon when debugging the file.

e Press up and down arrow keys to retrieve previously executed commands.

» If your expression does not fit on one line, use an ellipse (...) at the end of
the line and continue on the next line. For example, MATLAB considers

y =sin(x+1og10(2x+3))+cos(x +...
log10(2x + 3));

as one line of expression.
e Keep in mind that variable and function names are case sensitive.

C.4 SOLVING EQUATIONS

Consider the general system of n simultaneous equations as

Xy + apXy +oo+ag,x, = by

Ay X) + ApXy ++ + Ay X, = b,

Ay Xy + Ay Xy 0+ Ay Xy = bn
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or in matrix form

AX=B
where
ap ap ap, X b,
A= ay Ay (41 . X= X2 . B= b,
R S S X, b,

A is a square matrix and is known as the coefficient matrix, while X and B are vec-
tors. X is the solution vector we are seeking to get. There are two ways to solve for X
in MATLAB. First, we can use the backslash operator (\) so that

X=A\B
Second, we can solve for X as
X=A"B
which in MATLAB is the same as
X =inv(A)* B

We can also solve equations using the command solve. For example, given the qua-
dratic equation x? + 2x—3 = 0, we obtain the solution using the following MATLAB
command:

> [x]=solve('x"2 + 2*x — 3 =0')
X =

[—3]

[1]

indicating that the solutions are x=—3 and x=1. Of course, we can use the command

solve for a case involving two or more variables. We will see that in the following
example.

Example C.1
Use MATLAB to solve the following simultaneous equations:

25X1 —5X2 —20X3 =50
*5)(1 +1OX2 *4X3 =0
—SX] —4X2 +9X3 =0
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Solution
We can use MATLAB to solve this in two ways:

Method 1:
The given set of simultaneous equations could be written as

25 =5 =201| x 50

We obtain matrix A and vector B and enter them in MATLAB as follows:

> A=[25 -5 -20; -5 10 -4 -5 -4 9]
25 -5 -20
A=-5 10 —4
-5 -4 9

> B=[50 0 0]
50
B =

> X=inv(A)*B
29.6000
X =26.0000
28.0000

> X =A\B
29.6000
X =26.0000
28.0000

Thus, x; = 29.6, x, = 26, and x; = 28.
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Method 2:
Since the equations are not many in this case, we can use the command solve to
obtain the solution of the simultaneous equations as follows:

[x1,x2,x3]=s0lve('25*x]1 — 5*x2 — 20*x3=50’, ‘—=5*x1 + 10*x2
— 4*x3 =0', ‘=5*x1 — 4*x2 + 9*x3=0")

x1 =

148/5

X2 =

26

X3 =

28

which is the same as before.

Practice Problem C.1 Solve the following simultaneous equations using
MATLAB:

3X1 — X2 —2X3 =1
—Xi +6X2 —3X3 =0
—2X1 —3X2 +6X3 =6

Answer: x;, =3 = x5, X, = 2.

C.5 PROGRAMMING HINTS

A good program should be well documented, of reasonable size, and capable of
performing some computation with reasonable accuracy within a reasonable amount
of time. The following are some helpful hints that may make writing and running
MATLAB programs easier.

e Use the minimum commands possible and avoid execution of extra com-
mands. This is particularly true of loops.

e Use matrix operations directly as much as possible and avoid for, do, and/
or while loops if possible.

e Make effective use of functions for executing a series of commands over
several times in a program.

*  When unsure about a command, take advantage of the help capabilities of
the software.

e It takes much less time running a program using files on the hard disk than
on a floppy disk.

e Start each file with comments to help you remember what it is all about
later.

* When writing a long program, save frequently. If possible, avoid a long
program; break it down into smaller subroutines.
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TABLE C.8

Other Useful MATLAB® Commands
Command Explanation

angle Phase angle

bode Plot bode plot

conj Complex conjugate

diary Save screen display output in text format
grid Provides grid lines for 2D and 3D plots
mean Mean value of a vector

min (max) Minimum (maximum) of a vector

grid Add a grid mark to the graphic window
poly Converts a collection of roots into a polynomial
polyfit Polynomial curve fitting

roots Finds the roots of a polynomial

sort Sort the elements of a vector

sound Play vector as sound

std Standard deviation of a data collection
step Unit step response

sum Sum of elements of a vector

title Plot title

C.6 OTHER USEFUL MATLAB® COMMANDS

Some common useful MATLAB commands, which may be used in this book, are
provided in Table C.8.
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Odd-Numbered Problems

Chapter 1
1.1 Proof.
1.3 1/40.
1.5 (a) energy signal, (b) neither power nor energy, (c) neither power nor energy.
1.7 @ x(@® = 10u(@®-15u(—2) + Su(—4)
(b) YO = 2r(H-2r(t=2)—Tu(t—2)—-3u(t—4)
1.9 (@) x(¢) =10e™u(t)+ (2.5t =10 —10e " Yu(t — 4) + (5t — 40)u(t — 8)
—(2.5t =30)u(t -12)
(b) See Figure D.1.
1.11 Proof.
113 (@ -1, (b) 4.5, (c) 16, (d) 128.
1.15 See Figure D.2.
1.17 See Figure D.3.
1.19 See Figure D.4.
1.21 (a) 1.353, (b) 27.18¢¥, (c) 27.18e°7, (d) 545.98cos?.
1.23 See Figure D.5.
1.25 See Figure D.6.
1.27 See Figure D.7.
1.29 See Figure D.8.
1.31 See Figure D.9.
1.33 Proof.
1.35 (a) Linear and time-varying system.
(b) Nonlinear and time-invariant system.
(c¢) Linear and time-invariant system.
(d) Nonlinear and time-varying system.
1.37 (a) Nonlinear, (b) Nonlinear, (c) Linear.
1.39 (a) Causal and memoryless, (b) Causal and memoryless.
1.41 (a) Not time-invariant, (b) Time-invariant.
Ly 4O 0 1,
dt RC R dt
1.45 L + L y= L)c
dt RC RC
1.47 See Figure D.10.
1.49 See Figure D.11.

389
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x'(2)
A
A 108(z)
2.5
0 4 8 12 ¢
—10e™t
10 ~208(t-8)
FIGURE D.1 For Problem 1.9(b).
4
3.24
2.624

v

—2914
(a) -3.6
4.147
[ )
3.456
[ )
2.88
24
2
0 1 2 3 4 5 "
(b)
0.64
05657
0362
o 1 2 3 4 5 k

(c)

FIGURE D.2 For Problem 1.15.
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3
—e
—e
—e
—e
—e
)
—e

v

()
2 2
Il
® S o >
-2 -1 0 1 2 3 4 n
(b) 1_1
0.678
0.522
0.4571

L

(© -0.678

-4 -3

(=)
—
[ oS}
w
i

FIGURE D.3 For Problem 1.17.

x[n)
1
4 3 =2 -1 0 1 2 3 n
(a)
x[n)
0
0 1 2 3 4 5 6 7 7

(b)

FIGURE D.4 For Problem 1.19.
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x(t)
5
1
0 1 2 3 4 5 ?
(a)
¥(®)
6
2
1
-1 0 1 2 3 t >
(b)
FIGURE D.5 For Problem 1.23.
¥(®)
x(t) A

t 1

0 1
x'(¢)
A y'(@®
A
50 6(T 1) eS(tI 1
! 1 7
0 1 f
—28(0)]
(a) -5(t+1) (b)

FIGURE D.6 For Problem 1.25. (Continued)
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z(t)

A

blems 393

~V

L S(t-1)

FIGURE D.6 (Continued) For Problem 1.25.

|
—
—
~V

FIGURE D.7 For Problem 1.27.

~y
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¥(®) 4 2(t) T

4 ‘ 16

~+V
S 4

B 4

—4

(©

FIGURE D.8 For Problem 1.29.

II 15

(b)

FIGURE D.9 For Problem 1.31
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0.8

0.6

0.4 H

0.2

c0s(3000*pi*t)
=)

FIGURE D.10 For Problem 1.47.

Chapter 2
2.1 Proof.
2.3 Proof.
at

25 @ L -1 % (a1

a a a

(b) 0.5cos(®)(t + 0.5sin(21))—0.5sin(¢)(cos(?)—1).

2.7 See Figure D.12.
2.9 10(e'—e2u(r)
211 —e2u()

213 (a) %(1—e*2’)u(t)
(b) (e7'—eu()
1 . o
© Z(cos2t+sm2t—e 2 )u(t)

2.15 (a) unity system, (b) differentiator, (c) integrator.
2.17 Proof.
2.19 2(1-¢™), t>0
t, 0<t<2
2.21 y(t)=<4-t, 2<t<4

0, otherwise
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25 T T T T T T T T T O

20 1

15 1)

10 1

FIGURE D.11 For Problem 1.49.

2.23 de'—e u(r)
2.25 Proof.

2.27 (a) y[n]=%(4'”1 —l)u[n]

(b) yln] =2"(n + Duln]
© yln] =2"*'(1.5"=1)uln]
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x(8)
A
2
1
1>
-3 -2 -1 0 t
()
¥(2)
1
| -
>
-2 -1 0 1 2t
-1
(b)
z(t)
A
1
0.5
() -2 -1 0 1 2 t

FIGURE D.12 For Problem 2.7.

1, n=0

0, n=1

1, n=2
2.29 y[n]=4-1, n=3

0, n=4

-1, n=>5

0, otherwise

231 yrl=[0 1 3 6 5 3]
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Response y(£)

0 2 4 6 8 10 12 14
Time (s)

FIGURE D.13  For Problem 2.37(a).

2.33 (a) y[n] =+ 2)(0.4)uln] + 1.25(0.4)"u[n—1]
(b) y[n] = @ + 1)(0.4)"u[n] + n(0.4)""'uln—1]

2.35 [2 3]

2.37 (a) For y(r), see Figure D.13.

l-e, 0<r<2
(b) y()= '
Y {e"(e2 -, t>2
2.39 See Figure D.14.

2-5 T

OPYPYPYYIPYYYIYS T T
©
Q
Q
2t o .
(0]
151 Q E
=
=
1k 4
051 E
0 T??QOmn
0 5 10 15 20 25 30 35

FIGURE D.14 For Problem 2.39.
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241 h=[2 8 8 -16]
2.43 Stable.

2.45 Not BIBO stable.

2.47 v, (H) = 2(1—e u(®)

Chapter 3

31 () é(se*—lse*wlo)

(b) 7

33 (@ (22+8je-‘“

(b) 5cos2e~*

e—-c(s+l)

©

s+1

2
d) cos2te™ +sin2te ™
@ st +4 s*+4

3.5 (a) l(1—e*25)
)

o
(s+3)°

3.7 X(s):%[z_e—s ven]

(b)

39 f(0)=0, f(o)=3
311 @) x() = ut) + 2u(t—1)

) y(t)z%—e' e

(©) z(t) = (e7'cos3t—e"'sin3t)u(r)
3.13 (a) x(¢) = Be'cos2t—e~'sin2f)u(r)
(b) y(@) = @e~'—e)u(®)
© z2(0) =8@) + (e —e*)u(®)
d) h@) =28e¢u(r)
3.15 y(®) = 8(t—Du(t—1)—4(=2)y(t—2)—2u(t—2)—6u(t-3)
3.17 (a) h(t) = 2—e ?)u(r)
(b) g(®) =0.4e73 + 0.6e7'cost + 0.8¢'sint
© fi)=eDu(t—4)
d) d@)= ?cost - ?cos 2t
3.19 h(r) = 8(t)—4e™>u(r)

1 5 1 3 ..
t)y=——e "'+—e ' cos2t+—e " sin2t
3.21 y(@) 1 1 1
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1
s2+2as+a*+b
G,G;3(G + F)

1+ G,F

2
327 H=——"——
@ s +5+0.5

(b) y(®) = 4[1—e7%>c0s0.5t—e%'sin0.5¢]u(?)

329 ¥(0)= [ée - %e*’ + %ﬂ' )u(t)

3.31 y(t) = (1 + te™Hu(?)
3.33 i(f) = (2e72—2e7?'cost + 2e~Hsinf)u(f) = 2e~*(1—cost + sin?)u(r)

323 H=

3.25 H=

2
3.35 H(s)= > " 25*1
s +3s+1
3.37 v,(8) = (11=11e-05c050.866/—6.351e~05'sin0.8661)u(?)
330 1 2054 2s

T AN 434D 5+ +3s+1)

3.41 (a) Unstable, (b) stable, (c) unstable.

s—3
3.43 H(s)=———
@ Hs) s 4+2s5+2
(b) h(t) = (e 'cost—4e'sint)u(r)
345 (a) x=
heaviside(t —2)+1
(b)x =
t*2*exp(-t)
(c)x =

dirac(t) - exp(-2*t)*(cos(2*t) + (5*sin(2*t))/2)
347 x=

heaviside(t —3)* (exp(6 — 2 t)/2 —exp(3—1t) + 1/2)

— heaviside(t —2)*(exp(2 — ) —2* exp(4 — 2"1))

3.49 See Figure D.15.
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1.8}

1.6

14+

Impulse response

0.6
0.4+

02F

0.9

0.8 F

0.7 +

0.6

Step response

0.3 F

02F

0.1r

(b)

1.2+

0.8+

Time (s)

0.5

04+

02 04 06 08 1 1.2 14 16 1.8
Time (s)

FIGURE D.15 For Problem 3.49 (a) impulse response, (b) step response.

3.51 (@ z=
2
p =

(b)z=

—1.0000 +3.00001
-1.0000 —-3.00001

—1.0000 +2.0000i
—1.0000 —2.00001

401
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p =
0.0000 + 0.00001
—2.0000 + 3.00001
—2.0000 —3.00001
© z=
-9.4721
-0.5279
p =

—1.5956 +2.20751
—-1.5956 -2.2075i
—0.8087 +0.00001

3.53 See Figure D.16.

Chapter 4

0

41 x()=75- Z %sin nt
n=odd

4.3 (a)T =5ms, o, =1256.64 rad/s

nm

(d) a, :isin2 [j, b,=0
n 2

4.5 See Figure D.17.

4.7 f(l‘)=1+Z|:l;s1n4§m 2nm [1 Cosnj' Zr;m}
J
8

n=l1

. 3 Y
4.9 022?‘]761_ SJ OCI_TJ Cy, =
[ =i _ 1}
411 ¢,==———~=
2(1— jnm)

4.13 (a) 100, (b) 0, (c) 1.
4.15 (a) T=6.283s, ®, = 1 rad/s

(b) x(t)=0.4+0.4cost+0.24cos 2t +0.16 cos 3¢

N jVo jnt
4.17 v(r)= 2 (cosnm—1)e’
V(1) Z S 2 (cosnm=1e
4'19 (a) ﬁll = C—Vl’ (b) '3” = C)I’ (C) B}’l = Cne_jnm"3, (d) Bﬂ =jn(o()cﬂ
4.21 Proof.
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Bode diagram

10|

Magnitude (dB)
L
S

-30 [ T

0» 1 U S SR S S T | 1 U SR R S S N | 1 U S T S T
100 10! 10% 10%

(a) Frequency (rad/s)

Bode diagram

Magnitude (dB)

|
—_
(=3
(=)
T
1

|
—
N
(=]

—-180

1072 1072 100 10! 10? 10
(b) Frequency (rad/s)

FIGURE D.16 For Problem 3.53.
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nA

eV

0 1007 2007 3007

-4

(=}

100 200 7t 300 1

l

ve

FIGURE D.17 For Problem 4.5.

4.23 (a) Even.
(b) Even.
(©) Even.
(d) Odd.
(e) Odd.
() Odd.
(g) Half-wave odd symmetric.
(h) Even.
4.25 Proof.

4.27 109 W.
. . 2
429 d, = JjV,sin”(nm/2)
nm/4

4.31 10%.

4.33 i)(t) = ZAn sinnnt+¢,),  where

n=l1

A

_ 10 an”! 2n*m* —50
U s’ + 2nPn? —50) Snn
4.35 See Figure D.18.

4.37 See Figure D.19.
4.39 See Figure D.20.



Appendix D: Answers to Odd-Numbered Problems

20

18

16

14

12

®

10

0.08

0.06

0.04

0.02

—-0.02

Partial sum

—-0.04

—-0.06

~0.08 1 1 1 1 1

-05 -04 -03 -02 -01 0
(b) t

FIGURE D.18 For Problem 4.35.

Chapter 5

5.1 X(@) = (1=e =20 4 )
JoO

5.3 (@) X(Q)):.i(l_ze*j(ﬂ_'_eiju))
jo

(b)Y (o)== .i(cosoo— 1)
jo

405
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1.5 T T T T T T T T T

_1‘5 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

FIGURE D.19 For Problem 4.37.

|en|
RS

-100 q

FIGURE D.20 For Problem 4.39.
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55 Y(w)= iz(l — jcosm)
®

5.7 Proof.
5.9 (a) X() =27[6(® + ®,)e 7 + d(w—n,)e]

(b) Y(®) =2x[8(w + 100)&™ + 5(w—100m)e~™]
10+ jw)

511 @) Y(o)= le—jz.sm e
4 -0.250" + jo +1

) . .
(D):J(J(D +100+ j20—j9)

(&) ¥( (—o” + j20+1)*
© Yo :J{ SHE) L S+jo-2) }
2| ~(0+2)* +j2(0+2)+1  —(0-2)*+ j2(w—2)+1
-0’ (5+ jo)

@ O e
513

@ X (0)= 2{,4 +nd(w/ 2)jef°-5‘°

Jjo
1

() X(w)= 2{j(m+ 5 +md(o+1)+ oD + (0 — 1)}

© Xj3(m)=2+ jomd(m)
5.15 Proof.
5.7 See Figure D.21.
5.19 Proof.

5.21 (a) Proof. (b) (i) B=2". (i) p=2%.
T T

5.23 (a) See Figure D.22.
e+ joe ™ —1
0)2

(b) X(w)=
5.25 Proof.
—j2o _ 1
o -1
5.29 (a) x(1)=268(¢)—2e 'u(t)

527 X(w)=%

b y=—2
Y Tt(l‘z + 1)
©) z() = (=2e + 3eu(r)

5.31 (a) Y(O)= %(cos 2t —sin 2t)

(b) y(@) = 10e~*u()

© Y@ = (Se *=Se~*)u(f)
5.33 y(t) = (e'—e *u(f)
5.35 i(t) = 5(e"—eu(r)
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A Y

0.5

v

Cy

-1/4 0 1/4

v

(d)

FIGURE D.21 For Problem 5.17.



Appendix D: Answers to Odd-Numbered Problems 409

FIGURE D.22 For Problem 5.23(a).

5.37 H(w)=—25
1+ j8w

539 H(w)=—22RC_ highpass filter.
1+ joRC

541 HO)= % h(n)= (= +2¢ ™ utr)
|:—(x) + ]50)+6J

543 Y(co)=2X(t)+%X(m+o)U)+%X(co—(o,,)

5.45 (a) 60 Hz, (b) 50 Hz
5.47 66.67]

5.49 2010.62 J

551 X =

5 N 5
wi+2-41 wi+2+4i

The plot of IX(w)! is in Figure D.23.
5.53 See Figure D.24.
5.55 See Figure D.25.

Chapter 6
6.1 (a) Proof, (b) Proof.
6.3 j2[sinQ + sin2Q + sin3Q]

0.36
1-1.6cosQ
(b) 2jsinQk
1 1 1
© 2{ 1=04¢ 7@ 10.4¢ 70D }

6.5 (a)
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2.8 T T T T T T T T T

261 i

24+ E

22+ E

[X()]

1.8 k

161 h

0 1 2 3 4 5 6 7 8 9 10

FIGURE D.23 For Problem 5.51.

0.2 T T T T T T T
0.15 k
<
ES 0.1 h
S
< 0.051 b
p=
O 1 1 1 1 1 T T
0 2 4 6 8 10 12 14 16
Frequency (Hz)
0 T T T T
L
2 =50 b
<
~
_100 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
Frequency (Hz)

FIGURE D.24 For Problem 5.53.
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0.5}

Magnitude

0 2 4 6 8 10
Frequency (Hz)

12

14

16

200

100 |

Phase (°)

—100

—200 1 1 1 1 1
0 2 4 6 8 10

Frequency (Hz)

FIGURE D.25 For Problem 5.55.

1-0.6e

67 () % - jnZ[S(Q —20.-27k) - 3(Q + 20— 27k) |
k=0

0

(b) ﬁ + ZnZ[S(Q — 20— 27k) + §(Q+ 20— 27k) |

k=0

USRI

69 (@ o, .,

P

(b)

/Y 4 g

| ) oI 22)
© —|—=a -
2j| P +a P 4q

e’ ’
@ (]

6.11 (@) y[n] = (1.25)"u[—n]
(b) zln] = (=1)" (0.8)" x[n]
(© win] = n(0.8)"uln]
6.13 (a) x[-2]=3,x[0]=1,x[4]=-2,x[5]=1

b) x[n]= 1 nu[n—l]— 1 Mu[n]
(b) ) )

(©) x[n] =3cos(2n)

16

411
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6.15 Proof.
6.17 Proof.
1-a"

6°19 l_ae—jan/N
6.21 (a) X[k] = [6—2 + j2—2-2—j2]

(b) X[k]=[0 O 4-j4 0 O 0 4+j4 0]
6.23 Proof.
6.25 x[0] = 1, x[1] = —0.5257, x[2] = —0.8507, x[3] = 0.8507, x[4] = 0.5257
6.27 For DFT, 4,194,304. For FTT, 11,264.
6.29 The plot is shown in Figure D.26.
6.31 See Figure D.27.
6.33 See Figure D.28.

Chapter 7
71 (@ 1+z"'-z2-z3,(b) 1=z + 22—z

3 1
73 @ lzlk>, v |z|>g

6z 5z
3z-2 5z-2°

7.5 |z]|>2/3

1 az’
7.7 1
@LO @

zesin(1)
72 —2zecos(l) +e*

22 —zacosQ, z2(z+1)

7.9 (a) Ry

©

22 —2zacosQ, +a

FIGURE D.26 For Problem 6.29.
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18 T T T T T T T T
(0}
16 E
14 -
12 - -
10 - -
8 - -
6 - -
4 - -
2 - -
0 O—60—606 0606060606606 0°6
0 2 4 6 8 10 12 14 16 18
FIGURE D.27 For Problem 6.31.
Exact spectrum
6 T T T T T T
<
2 4r 7
g
oh
=]
= 2} .
0 L L L L L L
0 0.5 1 1.5 2 2.5 3 3.5
Q
1 Spectrum using hanning window
Q)
< i
3
k=
& i
o
E -
2 2.5 3 3.5

FIGURE D.28 For Problem 6.33.
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7.11 Proof.
7.13 Proof.
3z z+1
715 —
(z-3? z-3

717 (@) 1, (b) L.
7.19 x[0] =0, x[1] = 1, x[105] = —1
7.21 y[n] =11, -1,5, 1, 2, 10, =7, —6]

7.23 (a) 68[n]+12[—;j u[n]—lS(—;) u[n]

(b) 2u[n]—2(0.5)"u[n]
(©) 89[n]—10uln] + 7Tnu[n]—2(2)"u[n]
5 2 5 N 7 N
7.25 58[”]_3”‘[”]_5(_2) u[n]+ﬁ(—3) uln]
7.27 (a) (0.866)"cos(54.73°n)u[n]—0.7072(0.866)"sin(58.74°n)u[n]
(b) (0.8)"cos(60°n)u[n] + 2.02(0.8)"sin(60°n)u[n]
7.29 y[n] = 2(0.6)"cos(146.4n)u[n] + 3.02(0.6)"sin(146.4n)u[n]
7.31 y[n] = 3(2)"u[n]-2(1.5)"u[n]

7.33 y[n]:iu[n]—0.1491(\/lgj sin(114.1° n)u[ n]

3z 5z
7.35 H(z)=28[n]+ -
(2)=20(n] z-0.6 z+0.8
737 Y(z)=——
z-3
1 3
) — -
7.39 (2 )|:(Z—1)2 31_1}

741 (a) y[n] = 1.667u[n]—0.667(—0.2)"u[n]—0.8333(0.8)"u[n]
(b) y[n] = 0.5303(2)"u[n]—0.3636(—0.2)"u[n]—0.1667(0.8)"u[n]
7.43

¥l =0.3076[ (0.6)" = (=2)" [uln], y{n]=[0.667+(0.6)" ~0.205(-2)" |uln]

745 x=
(3/5)"n
7.47 pole =
—5.8284
-0.1716
zero =
—2.8338+0.0000i

—0.0831+1.8767i
—0.0831-1.8767i

7.49 Stable.
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Signals and Systems: A Primer with MATLAB® provides clear, interesting,
and easy-to-understand coverage of continuous-time and discrete-time
signals and systems. Each chapter opens with a historical profile or career
talk, followed by an introduction that states the chapter objectives and links
the chapter to the previous ones. All principles are presented in a lucid,
logical, step-by-step approach. As much as possible, the authors avoid
wordiness and detail overload that could hide concepts and impede under-
standing.

In recognition of the requirements by the Accreditation Board for Engineering
and Technology (ABET) on integrating computer tools, the use of MATLAB®
is encouraged in a student-friendly manner. MATLAB is introduced in Appen-
dix B and applied gradually throughout the book.

Each illustrative example is immediately followed by a practice problem
along with its answer. Students can follow the example step by step to solve
the practice problem without flipping pages or looking at the end of the book
for answers. These practice problems test students’ comprehension and
reinforce key concepts before moving on to the next section.

Toward the end of each chapter, the authors discuss some application
aspects of the concepts covered in the chapter. The material covered in the
chapter is applied to at least one or two practical problems or devices. This
helps students see how the concepts are applied to real-life situations.

In addition, thoroughly worked examples are given liberally at the end of
every section. These examples give students a solid grasp of the solutions
as well as the confidence to solve similar problems themselves. Some of the
problems are solved in two or three ways to facilitate a deeper understanding
and comparison of different approaches.

Ten review questions in the form of multiple-choice objective items are
provided at the end of each chapter with answers. The review questions are
intended to cover the “little tricks” that the examples and end-of-chapter
problems may not cover. They serve as a self-test device and help students
determine chapter mastery. Each chapter also ends with a summary of key
points and formulas.

Designed for a three-hour semester course on signals and systems, Signals
and Systems: A Primer with MATLAB® is intended as a textbook for
junior-level undergraduate students in electrical and computer engineering.
The prerequisites for a course based on this book are knowledge of standard
mathematics (including calculus and differential equations) and electric
circuit analysis.
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