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Preface
The idea of signals and systems arises in different disciplines such as science, 
engineering, economics, politics, and medicine. Most students of electrical and com-
puter engineering will deal with signals and systems in their professional life. This is 
why a course on signals and systems is an important part of most engineering curricula.

Some books on signals and systems are designed for a two-semester course 
sequence. Unfortunately, the field of electrical engineering has changed consider-
ably and its curriculum is so crowded that there is no room for a two-semester course 
on signals and systems. This book is designed for a three-hour semester course on 
signals and systems. It is intended as a textbook for junior-level students in electrical 
and computer engineering curricula. The prerequisites for a course based on this 
book are knowledge of standard mathematics (including calculus and differential 
equations) and electric circuit analysis.

This book intends to present continuous-time and discrete-time signals and sys-
tems to electrical and computer engineering students in a manner that is clearer, 
more interesting, and easier to understand than other texts. This objective is achieved 
in the following ways:

•	 We have included several features to help students feel at home with the 
subject. Each chapter opens with a historical profile or career talk. This is 
followed by an introduction that links the chapter with the previous chap-
ters and states the chapter objectives. The chapter ends with a summary of 
key points and formulas.

•	 All principles are presented in a lucid, logical, step-by-step manner. As 
much as possible, we have avoided wordiness and giving too much detail 
that could hide concepts and impede overall understanding of the material.

•	 Thoroughly worked examples are liberally given at the end of every sec-
tion. The examples are regarded as part of the text and are clearly explained 
without asking the reader to fill in missing steps. They give students a good 
understanding of the solution and the confidence to solve problems them-
selves. Some of the problems are solved in two or three ways to facilitate an 
understanding and a comparison of different approaches.

•	 To give students practice opportunity, each illustrative example is imme-
diately followed by a practice problem along with its answer. Students can 
follow the example step by step to solve the practice problem without flip-
ping pages or looking at the end of the book for answers. The practice prob-
lems are also intended to test if students understand the preceding example. 
It will reinforce their grasp on the material before they move on to the next 
section.

•	 Toward the end of each chapter, we discuss some application aspects of 
the concepts covered in the chapter. The material covered in the chapter is 
applied to at least one or two practical problems or devices. This helps the 
students see how the concepts are applied to real-life situations.
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•	 Ten review questions in the form of multiple-choice objective items are pro-
vided at the end of each chapter with answers. The review questions are 
intended to cover the little “tricks” that the examples and end-of-chapter 
problems may not cover. They serve as a self-test device and help students 
determine how well they have mastered the chapter.

In recognition of the requirements by ABET (Accreditation Board for Engineering 
and Technology) on integrating computer tools, the use of MATLAB® is encour-
aged in a student-friendly manner. We have introduced MATLAB in Appendix C 
and applied it gradually throughout this book. MATLAB has become a standard 
software package in electrical engineering curricula. To avoid confusing learning 
MATLAB with the main subject (signals and systems), we have delayed MATLAB 
till the end of each chapter.

Matthew N.O. Sadiku
Warsame H. Ali

MATLAB® is a registered trademark of The MathWorks, Inc. For product informa-
tion, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098, USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

http://www.mathworks.com
mailto:info@mathworks.com
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NOTES TO STUDENTS

Although electrical engineering is an exciting and challenging discipline, a course on 
signals and systems may intimidate you. This book was written to prevent that. A good 
textbook and a good professor are an advantage—but you are the one who does the 
learning. If you keep the following ideas in mind, you will do very well in this course:

•	 This course provides a foundation for other courses in the electrical engi-
neering curriculum. For this reason, put in as much effort as you can. Study 
the course regularly.

•	 Signals and systems is a problem-solving subject, learned through practice. 
Solve as many problems as you can. Begin by solving the practice problems 
following each example and then proceed to the end-of-chapter problems. 
The best way to learn is to solve a lot of problems. An asterisk in front of a 
problem indicates a challenging problem.

•	 MATLAB is a software that is very useful in signals and systems and 
other courses you will be taking. A brief tutorial on MATLAB is given in 
Appendix C to get you started. The best way to learn MATLAB is to start 
with it once you know a few commands.

•	 Each chapter ends with a section on how the material covered in the chapter 
can be applied to real-world situations. The concepts in this section may 
be new and advanced for you. No doubt, you will learn more of the details 
in other courses. We are mainly interested in making you gain a general 
familiarity with these ideas.

•	 Attempt the review questions at the end of each chapter. They will help you 
discover some “tricks” not revealed in the class or in the textbook.

•	 It is very tempting to sell your book after taking this course. However, 
our advice to you is, Do not sell your engineering books! When we were 
students, we did not sell any of our engineering books and were very glad 
we did not. We found that we needed most of them throughout our career.

A short review of the mathematical formulas you may need are covered in Appendix A 
while answers to odd-numbered problems are given in Appendix D.

Have fun!
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1 Basic Concepts

Society is never prepared to receive any invention. Every new thing is received, and it 
takes years for the inventor to get people to listen to him and years more before it can 
be introduced.

—Thomas Alva Edison

GLOBAL POSITIONING SYSTEM

Artist interpretation of GPS satellite. (Image courtesy of NASA, Washington, DC; Global Positioning System. 
http://en.wikipedia.org/wiki/Global_Positioning_System.)

The global positioning system (GPS) is a typical illustration of what signals and 
systems are all about. GPS is a satellite-based navigation system made up of a 
network of 24 satellites placed into orbit by the U.S. Department of Defense. GPS 
was originally designed for military use, but in the 1980s, the government made 
the system available for civilian use.

The 24 satellites that make up the GPS space segment are orbiting the earth about 
12,000 miles above us. These satellites travel at speeds of roughly 7,000 miles/h. 
GPS satellites transmit two low power radio signals. The signals travel by line of 
sight, meaning they will pass through clouds, glass, and plastic but will not go 
through most solid objects, such as buildings and mountains.

A GPS signal contains three different bits of information—a pseudorandom code, 
ephemeris data, and almanac data. The pseudorandom code identifies which satel-
lite is transmitting information. You can view this number on your GPS unit’s sat-
ellite page. Ephemeris data contains important information about the status of the 

http://en.wikipedia.org/wiki/Global_Positioning_System
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satellite, current date, and time. This part of the signal is essential for determining 
a position. The almanac data tells the GPS receiver where each GPS satellite should 
be at any time throughout the day. Each satellite transmits almanac data showing the 
orbital information for that satellite and for every other satellite in the system.

A GPS receiver calculates its position by precisely timing the signals sent by GPS 
satellites. The receiver uses the messages it receives to determine the transit time of 
each message and computes the distance to each satellite. These distances along with 
the satellites’ locations are used to compute the position of the receiver.

1.1  INTRODUCTION

The idea of signals and systems arises in different disciplines such as science, engi-
neering, economics, politics, and medicine. Scientists, mathematicians, financial 
analysts, cardiologists, and engineers all use the concepts of systems and signals 
because they are the foundation on which we build many things in our daily lives. 
Typical examples of systems include radio and television, telephone networks, 
radar systems, computer networks, wireless communication, military surveillance 
systems, and satellite communication systems. The theory of signals and systems 
provides a solid foundation for control systems, communication systems, power sys-
tems, and networking, to name a few.

Our objective in this book is to present an introductory, yet comprehensive, treat-
ment of signals and systems with an emphasis on computing using MATLAB®. The 
knowledge of a broad range of signals and systems is of practical value in describing 
human experience. It is also important because engineers must be familiar with sig-
nal and system concepts and apply the knowledge to analyze some specific signals 
and systems they will deal with in their professional life.

In this chapter, we begin by discussing some of the basic concepts in signals and 
systems. We introduce the mathematical representations of signals, their properties, 
and applications. We also discuss different systems and how the material covered in 
this chapter is used in some applications. We finally learn how to use MATLAB to 
process signals.

1.2  BASIC DEFINITIONS

To avoid any misconception, it is expedient that we define at the outset what we mean 
by signals and systems.

A signal x(t) is a set of data or function of time that represents a variable 
of interest.

A signal typically contains information about the nature of a phenomenon. 
Examples of signals include the atmospheric temperature, humidity, human voice, 
television images, a dog’s bark, and birdsongs. More generally, a signal may be a 
function of more than one independent variable (time). For example, pictures are 
signals that depend on two independent variables (horizontal and vertical positions) 
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and may be regarded as two-dimensional signals. However, in this text, we will con-
sider only one-dimensional signals with time as the independent variable.

A system is a collection of devices that operate on input signal x(t) (or excita-
tion) to produce an output signal y(t) (or response).

A system may also be regarded as a mathematical model of a physical process 
that relates the input signal to the output signal. Examples of systems include elec-
tric circuits, computer programs, the stock market, weather, and the human body. 
A system may have several mathematical models or representations. The variables 
in the mathematical model are described as signals, which may be current, voltage, 
or displacement. In electrical systems, signals are often represented as currents and 
voltages. In mechanical systems, they are often represented as temperatures, forces, 
and velocities. In hydraulic systems, signals may be displacements and pressures.

Figure 1.1 illustrates the block diagram of a single-input single-output system. We 
classify the signals that enter the system as input signals, while the signals produced 
by the system as outputs. For example, we may regard voltages and currents as func-
tions of time in an electric circuit as signals, while the circuit itself is regarded as a 
system. In engineering systems, signals may carry energy or information.

1.3  CLASSIFICATIONS OF SIGNALS

There are many ways of classifying signals: continuous-time or discrete-time, peri-
odic or nonperiodic, energy or power, analog or digital, random or nonrandom, real 
or complex, etc.

1.3.1  Continuous-Time and Discrete-Time Signals

A signal x(t) that is defined at all instants of time is known as a continuous-time signal.

A continuous-time signal takes a value at every instant of time t.

An example of a continuous-time signal x(t) is shown in Figure 1.2a.

A discrete-time signal is defined only at particular instants of time.

A discrete-time signal is usually identified as a sequence of numbers, denoted 
by x[n], where n is an integer. It may represent a phenomenon for which the 

Excitation
x(t) y(t)

(Input signal)
System Response

(Output signal)

FIGURE 1.1  A simple system.
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independent variable n is inherently discrete. An example of discrete-time signal 
x[n] is shown in Figure 1.2b.

Since time is naturally continuous, most physical systems are continuous-time 
systems. Discrete-time signals are often obtained from continuous-time signals 
through sampling.

As typically shown in Figure 1.3, the continuous-time signal x(t) in Figure 1.3a is 
sampled uniformly with sampling period T to produce the discrete-time signal x[n] 
in Figure 1.3b. We simplify notation by letting x(kT)≜x[k]. A discrete-time signal 

x[n]
2

1

–3 –2 –1 0 1 2 3 n(b)

0(a) t

x(t)

FIGURE 1.2  Typical examples of (a) continuous-time and (b) discrete-time signals.

t

(a)

T

(b)

kT

x(t)

x[k]

FIGURE 1.3  Obtaining x[k] from x(t) through sampling.
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is equally spaced in time with sampling period T. Thus, discrete-time signals are 
samples of continuous-time signals, or they may exist naturally.

1.3.2  Periodic and Nonperiodic Signals

A periodic continuous-time signal satisfies

	
x t x t nT( )= +( ) 	 (1.1)

where
n is an integer
T is the period of the signal

A periodic signal is one that repeats itself every T seconds.

A popular example of a periodic signal is the sinusoid

	 x t A t t( ) sin( ),= + - ¥ < < ¥w q 	 (1.2)

where
A is the amplitude of the signal
ω( = 2πf = 2π/T) is the angular frequency in radians per second
θ is the phase in radians

Another example of a periodic (nonsinusoidal) continuous-time signal is shown in 
Figure 1.4a. Any signal that does not satisfy the periodicity condition in Equation 1.1 

x(n)

–N 0 N 2N n
(b)

x(t)

1

–T 0(a) T 2T

FIGURE 1.4  Examples of periodic (a) continuous-time and (b) discrete-time signals.
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is called a nonperiodic signal. We will be dealing with nonperiodic signals (step 
functions, ramp functions, rectangular functions, etc.) later.

A discrete-time signal x[n] is periodic with period N if it satisfies

	
x n x n Néë ùû = +éë ùû 	 (1.3)

The discrete-time sine and cosine signals are given in terms of complex exponential 
signals as

	
x n n e ej n j n[ ] cos( ) ( )= = + -w w w1

2
	 (1.4)

	
y n n

j
e ej n j n[ ] sin( ) ( )= = - -w w w1

2
	 (1.5)

Another example of a periodic discrete-time signal is shown in Figure 1.4b.

1.3.3 A nalog and Digital Signals

If a continuous-time signal x(t) can assume any value in the range −∞ < t < ∞, then 
it is called an analog signal. Although all analog signals are continuous-time signals, 
not all continuous-time signals are analog signals. If a discrete-time signal assumes 
only finite values, then it is called a digital signal.

An analog signal is a continuous-time signal in which the variation with time 
is analogous (or proportional) to some physical phenomena.

A digital signal is a discrete-time signal that can have a finite number of values 
(usually binary).

A digital signal can assume only a finite number of values. The difference between 
analog and digital signals is that analog is a continuous electrical signal, whereas 
digital is a discrete electrical signal. We live in an analog world and most signals 
are analog. Although some signals are inherently digital, most digital signals are 
obtained from analog signals by sampling or an analog-to-digital converter (ADC).

For example, an analog signal is taken straight from the microphone and recorded 
into a tape in its original form. The signal from the microphone is an analog signal, 
and therefore the signal on the tape is analog as well. Since data is sent using variable 
currents in an analog system, it is very difficult to remove noise and signal distor-
tions during the transmission. For this reason, analog signals cannot perform high-
quality data transmission. On the other hand, digital signals use binary data strings 
(0 and 1) to reproduce data being transmitted.
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1.3.4 E nergy and Power Signals

For continuous-time signal x(t), the normalized energy E of x(t) (assuming x(t) is real) is

	

E x t dt=
-¥

¥

ò ( )2 	 (1.6)

If x(t) is complex valued, Equation 1.6 can be generalized:

	

E x t dt=
-¥

¥

ò | ( ) |2 	 (1.7)

where |x(t)| is the magnitude of x(t). The normalized power P for real x(t) is

	

P
T

x t dt
T

T

T

=
®¥

-
òlim ( )

/

/
1 2

2

2

	 (1.8)

This can be generalized for complex value x(t) as

	

P
T

x t dt
T

T

T

=
®¥

-
òlim | ( ) |

/

/
1 2

2

2

	 (1.9)

Similarly, for a discrete-time signal x[n], the normalized energy E of x[n] is

	

E x n
n

=
=-¥

¥

å | [ ] |2 	 (1.10)

while the normalized power P is

	

P
N

x n
N

n N

N

=
+®¥

=-
ålim | [ ] |

1
2 1

2 	 (1.11)

Based on the definitions of E and P in Equations 1.6 through 1.11, we define the 
following:

A signal x(t) or x[n] is an energy signal if and only if 0 < E < ∞ and conse-
quently P = 0.

A signal x(t) or x[n] is a power signal if and only if 0 < P < ∞ and conse-
quently E = ∞.
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If a signal is a power signal, then it cannot be an energy signal or vice versa; 
power and energy signals are mutually exclusive. A signal may be neither a power 
nor an energy signal if the conditions in Equations 1.6 through 1.11 are not met. 
Almost all periodic functions of practical interest are power signals.

1.3.5 E ven and Odd Symmetry

By definition, a signal is even if

	
x t x t( ) = -( ) 	 (1.12)

A function is even if its plot is symmetrical about the vertical axis; that is, the signal 
for t < 0 is the mirror image of the signal for t > 0. Examples of even signals are 
cos t, t2, and t4.

By definition, a signal is odd if

	
x t x t( ) = - -( ) 	 (1.13)

The plot of an odd function is antisymmetrical about the vertical axis. Examples of 
odd functions are t, t3, and sin t.

An even signal x(t) is one for which x(t) = x(−t) and an odd signal y(t) is one 
for which y(t)= −y(−t).

Any signal x(t) can be represented as the sum of even and odd signals as

	 x t x t x te o( ) ( ) ( )= + 	 (1.14)

where
xe(t) is the even part
xo(t) is the odd part

Replacing t with −t in Equation 1.14 and incorporating Equations 1.12 and 1.13, 
we get

	 x t x t x t x t x te o e o( ) ( ) ( ) ( ) ( )- = - + - = - 	 (1.15)

Adding Equations 1.14 and 1.15 and dividing by 2,

	
x t x t x te( ) ( ) ( )= + -éë ùû

1
2

	 (1.16)



9Basic Concepts

Subtracting Equation 1.15 from Equation 1.14 and dividing by 2,

	
x t x t x to( ) ( ) ( )= - -éë ùû

1
2

	 (1.17)

Thus,

	

x t
x t x t x t x t

even odd

( )
( ) ( ) ( ) ( )= + - + - -

2 2� ����� ����� � ����� �����
	 (1.18)

Equation 1.16 shows that the two signals are added and scaled in magnitude to produce 
the even signal xe(t), while Equation 1.17 indicates that x(−t) is subtracted from x(t) and 
the result is amplitude-scaled by 0.5 to produce the odd signal xo(t). For a discrete-time 
signal x[n], we can construct the even and odd parts using Equations 1.16 and 1.17.

Note the following properties of even and odd functions:

	 1.	The product of two even functions is also an even function.
	 2.	The product of two odd functions is an even function.
	 3.	The product of an even function and an odd function is an odd function.
	 4.	The sum (or difference) of two even functions is also an even function.
	 5.	The sum (or difference) of two odd functions is an odd function.
	 6.	The sum (or difference) of an even function and an odd function is neither 

even nor odd.

Each of these properties can be proved using Equations 1.12 and 1.13.

Example 1.1

Show that the signal in Equation 1.2 is periodic.

Solution

The period of the signal in Equation 1.2 is

	
T

f
= =

1 2p
w

	

x t T A t T A t

A t

( ) sin[ ( ) ] sin

sin(

+ = + + = +æ
è
ç

ö
ø
÷ +

é

ë
ê

ù

û
ú

= + +

w q w
p

w
q

w p

2

2 qq w q) sin( )

( )

= +
=

A t

x t

showing that x(t) satisfies Equation 1.1; hence it is periodic.

Practice Problem 1.1  Show that the signal x(t) = A cos (2πt + 0.1π) is periodic.

Answer: Proof.
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Example 1.2

Determine whether the following signals are energy signals, power signals, or 
neither.

	 (a)	 x t
e t aat

( )
, ,

,
=

< < ¥ >ì
í
ï

îï

- 0 0

0 otherwise

	 (b)	 x(t) = A cos(ωt + θ)
	 (c)	 x[n] = 10ej2n

Solution

	 (a)	 The normalized energy of the signal is

	

E x t dt e dt
e

a a
at

at

= = =
-

¥
= < ¥

-¥

¥

-

¥ -

ò ò( )2 2

0

2

2 0
1

2

	 confirming that x(t) is an energy signal.
	 (b)	 The sinusoidal signal has period T = 2π/ω.
	 The normalized average power is

	

p
T

x t dt A t dt

A
t

T T

= = +

= + +[ ]

ò ò1
2

2
1
2

1 2 2

2

0

2 2

0

2

( ) cos ( )

cos( )

w
p

w q

w
p

w q ddt

A A
0

2

2 2

2
1
2

2
2

p w

w
p

p
w

/

ò
= = < ¥

		  showing that x(t) is a power signal. All periodic signals are generally power 
signals.

	 (c)	 x n e e n j nj n j n[ ] = = = ( ) + ( )10 10 10 2 22 2 | cos sin | 

= ( ) + ( )éë ùû =10 2 2 102 2cos sinn n

	 The normalized average power is

	

P
N

x n
N

N

N
n N

N

N
n N

N

N

=
+

=
+

=
+

®¥
=-

®¥
=-

®¥

å ålim | [ ]| lim

lim

1
2 1

1
2 1

10

1
2

2 2

11
100 2 1 100( )N + = < ¥

	 that is, x[n] is a power signal.
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Practice Problem 1.2  Determine whether the following signals are energy signals, 
power signals, or neither.

	 (a)	 x t
t t

( )
,

,
=

< < ¥ì
í
î

0

0 otherwise

	 (b)	 x t
A a t a

( )
,

,
=

- < <ì
í
î0 otherwise

	 (c)	x[n] = 5e−j4n

Answer: (a) Neither, (b) energy, (c) power.

Example 1.3

Determine the even and odd components of
	 (a)	x(t) = 10 sin t + 5 cos t – 2 cos t sin t
	 (b)	y(t) shown in Figure 1.5a

Solution

	 (a)	We first find x(−t) and then apply Equations 1.13 and 1.14. We should keep 
in mind that sin(−t) = −sin t  and  cos(−t) = cos t.

	

x t t t t t

t t

( ) sin( ) cos( ) cos( )sin( )

sin cos co

- = - + - - - -
= - + +

10 5 2

10 5 2 ss sint t

	 Hence,

	

x t
x t x t

t

x t
x t x t

t t t

e

o

( )
( ) ( )

cos

( )
( ) ( )

sin cos sin

=
+ -

=

=
- -

= -

2
5

2
10 2

	 (b)	We first obtain y(−t) as shown in Figure 1.5b. Note that

	

y t
t

t

y t
t

t

( )
,

,

( )
,

,

=
<
>

ì
í
î

- =
<
>

ì
í
î

0 0

1 0

1 0

0 0

y(t) y(–t)

1 1

(a) (b)

FIGURE 1.5  For Example 1.3(b).
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Hence,

	

y t
y t y t

t

t

y t

e

e

( )
( ) ( )

( ),

( ),

( )

=
+ -

=
+ <

+ >

ì

í
ïï

î
ï
ï

=
2

1
2

0 1 0

1
2

1 0 0

1
2

   

==
- -

=
- <

- >

ì

í
ïï

î
ï
ï

=
- <

>

ì
y t y t

t

t

t

t

( ) ( )
( ),

( ),

,

,2

1
2

0 1 0

1
2

1 0 0

1
2

0

1
2

0
íí
ïï

î
ï
ï

Both ye(t) and yo(t) are sketched in Figure 1.6.

ye(t) yo(t)

1/2

1/2

–1/2
1

(a) (b)

FIGURE 1.6  For Example 1.3(b).

h(t)

1

0 1 t

FIGURE 1.7  For Practice Problem 1.3b.

(a)

he(t)
ho(t)

1/2 1 1 t

–1/2

1/2

(b)

0

FIGURE 1.8  For Practice Problem 1.3b.
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Practice Problem 1.3  Find the even and odd parts of the following signals:

	 (a)	 z(t) = t2 + 4t − 10
	 (b)	 h(t) shown in Figure 1.7

Answer: (a) ze(t) = t2 – 10, zo(t) = 4t, (b) See Figure 1.8.

1.4  BASIC CONTINUOUS-TIME SIGNALS

We now consider some simple, standard continuous-time signals. These include the 
unit step function u(t), the unit ramp function r(t), and the impulse function δ(t). 
These three functions are called singularity functions. A singularity function is one 
that is discontinuous or has discontinuous derivatives. In addition to the singularity 
functions, we will also consider the unit rectangular function Π(t), the unit triangular 
function Λ(t), the sinusoidal function, and the exponential function.

1.4.1 U nit Step Function

The unit step function u(t), also known as Heaviside unit function, is defined as

	

u t
t

t
( )

,

,
=

>
<

ì
í
î

1 0

0 0
	 (1.19)

The unit step function u(t) is 0 for negative values of t and 1 for positive values 
of t.

The unit step function is shown in Figure 1.9. We should note that u(t) is discon-
tinuous at t = 0; it is undefined at t = 0.

We use the step function to represent an abrupt change, like the changes that 
occur in the circuits of control systems and digital computers. It is used in represent-
ing a signal that is zero up to some time and finite thereafter. For example, the signal

	
x t

t t

t
( )

cos ,

,
=

³
<

ì
í
î

w 0

0 0
	 (1.20)

u(t)

1

0 t

FIGURE 1.9  The unit step function.
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can be written concisely as

	
x t u t t( ) = ( )cosw 	 (1.21)

As another example, when we turn the key in the ignition system of a car, we 
are actually introducing a step voltage, the battery voltage. Given a continuous-time 
signal x(t), the product x(t)u(t) is given by

	
x t u t

x t t

t
( ) ( )

( ),

,
=

>
<

ì
í
î

0

0 0
	 (1.22)

This is illustrated in Figure 1.10. From this, we conclude that the multiplication of a 
signal x(t) with the unit step function u(t) eliminates the values of x(t) for t < 0.

1.4.2 U nit Impulse Function

The derivative of the unit step function u(t) is the unit impulse function δ(t), which 
we write as

	

d( ) ( )
,

,
t

d

dt
u t

t

t
= =

¹
=

ì
í
î

0 0

0undefined
	 (1.23)

x(t)

x(t)u(t)

0(a)

(b)

t

0 t

FIGURE 1.10  An arbitrary signal x(t) in (a) is multiplied by u(t) in (b).
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The unit impulse function, also known as the delta function, is shown in Figure 1.11.

The unit impulse function δ(t) is zero everywhere, except at t = 0, where it is 
undefined.

The unit impulse may be regarded as an applied or resulting shock. It may be 
visualized as a very short duration pulse of unit area. This may be expressed math-
ematically as

	

d( )t dt =
-

+

ò 1

0

0

	 (1.24)

where t = 0− denotes the time just before t = 0 and t = 0+ is the time just after t = 0. 
For this reason, it is customary to write 1 (denoting unit area) beside the arrow that is 
used to symbolize the unit impulse function, as shown in Figure 1.12. For example, 
an impulse function 10δ(t) has an area of 10. Figure 1.12 shows the impulse functions 
5δ(t + 2), 10δ(t), and −4δ(t − 3).

δ(t)

0 t

FIGURE 1.11  The unit impulse function.

10δ(t)

–2 –1 0 1 2 3 t

5δ(t+2)

–4δ(t–3)

FIGURE 1.12  Three impulse functions.
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To better understand the delta function, consider the function shown in Figure 1.13a. 
The function g(t) becomes a unit step as Δ→0.

	
u t g t( ) lim ( )=

D®0
	 (1.25)

The derivative g′(t) of g(t) is shown in Figure 1.13b, where we notice that as Δ→0, 
g′(t) becomes the unit impulse function.

	
d( ) lim ( )t g t= ¢

D®0
	 (1.26)

Thus, we can consider the delta function δ(t) as a large spike or impulse at the origin.
To illustrate how the impulse function affects other functions, let us evaluate the 

integral

	

f t t t dto

a

b

( ) ( )d -ò 	 (1.27)

where a < to < b. Since δ(t−to) = 0 except at t = to, the integrand is zero except at to.
Thus,

	

f t t t dt f t t t dt f t t t dt f to

a

b

o

a

b

o o o o

a

b

( ) ( ) ( ) ( ) ( ) ( ) ( )d d d- = - = - =ò ò ò

g(t)

g΄(t)

1

1

0(b)

0
(a)

∆

∆

∆ t

t

FIGURE 1.13  Functions that approach the unit step and unit impulse as Δ → 0.
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or

	

f t t t dt f to

a

b

o( ) ( ) ( )d - =ò 	 (1.28)

This shows that when a function is integrated with the impulse function, we obtain 
the value of the function at the point where the impulse occurs. This is a useful prop-
erty of the impulse function known as the sampling or sifting property. The special 
case of Equation 1.28 is for to = 0. Then, Equation 1.28 becomes

	

f t t dt f( ) ( ) ( )d
0

0

0
-

+

ò = 	 (1.29)

If the integration interval does not include the impulse function, then the integration 
in Equation 1.23 is zero. For example,

	

d d( ) , ( )t dt t dt= =
-¥

-

ò ò0 0

2

3

5

	 (1.30)

This and other properties of the impulse functions are presented in Table 1.1.

1.4.3 U nit Ramp Function

Integrating the unit step function u(t) results in the unit ramp function r(t); we write

	

r t u d tu t

t

( ) ( ) ( )= =
-¥
ò l l 	 (1.31)

TABLE 1.1
Properties of the Unit Impulse Function
1.  f(t)δ(t−to) = f(to)δ(t−to)

2. f t t t dt f to o( ) ( ) ( )d - =
-¥

¥

ò  

3. d( ) ( )t t
d

dt
u t to o- = -

4. u t t t d
t t

t t
o o

o

o

t

( ) ( )
,

,
- = - =

>
<

ì
í
î-¥

ò d l l
1

0

   

  

5. δ(−t) = δ(t), that is, δ(t) is an even function
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or

	

r t
t

t t
( )

,

,
=

<
³

ì
í
î

0 0

0 	 (1.32)

The unit ramp function is zero for negative values of t and has a unit slope 
for positive values of t.

Figure 1.14 shows the unit ramp function. In general, a ramp is a function that 
changes at a constant rate.

We should keep in mind that the three singularity functions (step, impulse, and 
ramp) are related by differentiation as

	
d( )

( )
, ( )

( )
t

du t

dt
u t

dr t

dt
= = 	 (1.33)

or by integration as

	

u t d r t u d

t t

( ) ( ) , ( ) ( )= =
-¥ -¥
ò òd l l l l 	 (1.34)

1.4.4 R ectangular Pulse Function

The unit rectangular pulse function is defined as

	
P t t t

t
t t tæ

è
ç

ö
ø
÷ =

<ì
í
î

=
- < <ì1 2

0

1 2 2

0

, | | /

,

, / /

,otherwise otherwise
íí
î

	 (1.35)

r(t)

1

10 t

FIGURE 1.14  The unit ramp function.
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It is centered at the origin and has unit height and width τ. Figure 1.15 shows the 
rectangular pulse function. It is evident from the figure that we can express the rect-
angular pulse function in terms of the unit step function as

	
P t

u t u t
t

t tæ
è
ç

ö
ø
÷ = +æ

è
ç

ö
ø
÷ - -æ

è
ç

ö
ø
÷2 2

	 (1.36)

The rectangular function results from an on–off switching operation of a source. It 
is used in extracting part of a signal.

1.4.5 T riangular Pulse Function

The unit triangular function is defined as

	

L t
t

t

t
t

t

t
t

t t
t

t

t
æ
è
ç

ö
ø
÷ =

- - < <ì
í
ï

îï
=

+ - < <

- <
1

0

1 0

1 0
| |

,

,

,

,
otherwise

tt <

ì

í

ï
ï
ï

î

ï
ï
ï

t

0, otherwise

	 (1.37)

This means that the unit triangular pulse is centered at the origin, has unit height, 
and width 2τ. The triangular function is shown in Figure 1.16.

1.4.6 S inusoidal Signal

Perhaps the most important and useful of all the standard signals is the sine wave or 
sinusoidal signal. It can take the form of

	
x t t x t t( ) = ( ) =sin , cosw w 	 (1.38)

Π(t/τ)

–τ/2 τ/2 t0

1

FIGURE 1.15  The unit rectangular pulse function.
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or by combining both to form a complex exponential signal

	 x t e t j tj t( ) cos sin= = +w w w 	 (1.39)

where ω is the frequency of the sinusoid. We already came across sinusoids in 
Equation 1.2.

1.4.7 E xponential Signal

The continuous-time exponential function is defined as

	 x t Aeat( ) = 	 (1.40)

where A and a are constants, which may be complex in general. If we assume that 
A and a are real, the exponential function is shown in Figure 1.17 for both positive and 
negative values of a. The signal x(t) in Equation 1.39 is a complex exponential signal, 

Λ(t/τ)

1

0–τ τ t

FIGURE 1.16  The unit triangular pulse function.

x(t)

a < 0

(b)
t0

A

x(t)

a > 0

A

t
(a)

0

FIGURE 1.17  The exponential signal: (a) a > 0 and (b) a < 0.
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which will play a major role in our treatment of signals and systems. One reason that 
causes the signal to arise in many applications is its rate of change.

	

d

dt
x t aAe ax tat( ) ( )= = 	 (1.41)

This means that the derivative of x(t) at any time is proportional to its value at that time.

Example 1.4

Evaluate the following:

	 (a)	 sin3
2

t td
p

-æ
è
ç

ö
ø
÷

-¥

¥

ò dt

	 (b)	 t t dt4 2d( )-
-¥

¥

ò
Solution
	

(a)

	

sin sin

sin

/

3
2

3

3
2

1

2

t t t
t

d
p

p

p

-æ
è
ç

ö
ø
÷ =

= = -

=-¥

¥

ò dt

	
(b)

	
t t dt t

t
4 4

2
42 2 16d( )- = = =

=
-¥

¥

ò

Practice Problem 1.4  Evaluate the following:

	 (a)	 sin ( )t t dt3

2
+æ

è
ç

ö
ø
÷

é

ë
ê

ù

û
ú

-¥

¥

ò p
d

	 (b)	 ( ) ( )t t t dt2

0

10

4 2 1+ - -ò d

Answer: (a) 1, (b) 3.

Example 1.5

Express the pulse (or rectangular) in Figure 1.18 in terms of the unit step. Calculate 
its derivative and sketch it.

Solution

The signal in Figure 1.18 is also called the gate function. It may be regarded as a 
step function that switches on at t = 2 s and switches off at t = 5 s. As shown in 
Figure 1.19a, it consists of two step functions. From the figure, we get

	 v(t) = 10u(t − 2) − 10u(t − 5) = 10[u(t − 2) − u(t − 5)]
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Taking the derivative of this gives

	

dv
dt

t t= - - -10 2 5[ ( ) ( )]d d

which is shown in Figure 1.19b.

Practice Problem 1.5  Express the current pulse in Figure 1.20 in terms of the unit 
step function. Find its integral and sketch it.

Answer: 10 2 2 4u t u t u t( ) -( )+ -( )éë ùû– , 10 2 2 4r t r t r t( ) -( )+ -( )éë ùû– . See Figure 1.21.

v(t)

10

0 1 2 3 4 5 t

FIGURE 1.18  For Example 1.4.

10u(t–2) –10u(t–5)

–10δ(t–5)

10δ(t–2)

–10

+

(a)

(b)

dv/dt

0 21

0 2 3 4 5 t1

0 2 3 4 5 t1

t

10

FIGURE 1.19  For Example 1.5: (a) decomposition of the pulse in Figure 1.18 and (b) deriva-
tive of the pulse in Figure 1.18.
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Example 1.6

Sketch the following signals:

	 (a)	 x t
t

( ) =
-æ

è
ç

ö
ø
÷3

4
2

P

	 (b)	 y t
t

( ) =
-æ

è
ç

ö
ø
÷2

3
2

L

Solution

	 (a)	 The signal x(t) is a rectangular pulse centered at t = 4 with magnitude 3 
and has width 2. It is sketched in Figure 1.22a. To be sure that the sketch 
is correct, we use Equation 1.35. Replace every t with t − 4 and set τ = 2. 
We obtain

	

x t
t t

t

( )
,

,

,

=
-æ

è
ç

ö
ø
÷ =

- < - <ì
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î

=
- < - <

3
4
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1 2 2 4 2 2
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3 1 4 1

P
/ /

otherwise

00

3 3 5

0

,

,

,

otherwise

otherwise

ì
í
î

=
< <ì

í
î

t

		  which is exactly what we have in Figure 1.22a.

i(t)

10

0 2 4 t

–10

FIGURE 1.20  For Practice Problem 1.5.

∫idt

20

0 2 4 t

FIGURE 1.21  For Practice Problem 1.5.
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	 (b)	 This is a triangular pulse centered at t = 3 with magnitude 2 and with τ = 2 
so that the width is 2τ = 4. Thus, y(t) is sketched in Figure 1.22b. To con-
firm this, we use Equation 1.37. Replace every t with t − 3 and set τ = 2. 
We obtain

	

y t
t

t
t

t
t( )

,

,

,

=
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è
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ø
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,

,

, <<
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3
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t t,

, otherwise

		  which confirms the sketch in Figure 1.22b.

Practice Problem 1.6  Sketch the following signals:

	 (a)	 x t
t

( ) =
-æ

è
ç

ö
ø
÷5

2
4

P

	 (b)	 y t
t

( ) =
-æ

è
ç

ö
ø
÷3

2
3

L

Answer: See Figure 1.23.

2
3

0 01 12 23 34 45 56 tt

(a) (b)

x(t) y(t)

FIGURE 1.22  For Example 1.6.
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1.5  BASIC DISCRETE-TIME SIGNALS

Here we consider some simple, standard discrete-time signals.

1.5.1 U nit Step Sequence

Like the continuous-time unit step, we define the unit step sequence u[n] as

	
u n

n

n
[ ]

,

,
=

<
³

ì
í
î

0 0

1 0
	 (1.42)

As shown in Figure 1.24, u[n] is a sequence of 1s starting at the origin. Notice that 
u[n] is defined at n = 0 unlike u(t), which is not defined at t = 0.

1.5.2 U nit Impulse Sequence

In discrete time, we define  unit impulse sequence as

	
d[ ]

,

,
n

n

n
=

¹
=

ì
í
î

0 0

1 0
	 (1.43)

3
5

0 01 12 23 34 4 5–1 tt
(a) (b)

x(t)
y(t)

FIGURE 1.23  For Practice Problem 1.6.

u[n]

1

–3 –2 –1 0 1 2 3 4 n

FIGURE 1.24  The unit step sequence.
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This is illustrated in Figure 1.25. Notice that we do not have difficulties in defining 
δ[n] unlike δ(t). Some properties of the unit impulse sequence are listed in Table 1.2.

1.5.3 U nit Ramp Sequence

The unit ramp sequence is defined as

	
r n

n n

n
[ ]

,

,
=

³
<

ì
í
î

0

0 0
	 (1.44)

The sequence is shown in Figure 1.26. The relationships between unit impulse, unit 
step, and unit ramp sequences are

	
d[ ] [ ] [ ]

,

,
n u n u n

n

n
= - - =

=
¹

ì
í
î

1
1 0

0 0
	 (1.45)

	

u n m
m

n

[ ] [ ]=
=-¥
å d 	 (1.46)

δ[n]

1

–3 –2 –1 0 1 2 3 n

FIGURE 1.25  The unit impulse sequence.

TABLE 1.2
Properties of the Unit Impulse Sequence
1. x[n]δ[n] = x[0]δ[n]

2. x[n]δ[n−k] = x[k]δ[n−k]

3. δ[n] = u[n]–u[n−1]

4. u n k
k

n

[ ] [ ]=
=-¥
åd

5. x n x k n k
k

[ ] [ ] [ ]= -
=-¥

¥

å d
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	 u n r n r n[ ] [ ] [ ]= + -1 	 (1.47)

	

r n u m
m

n

[ ] [ ]=
=-¥

-

å
1

	 (1.48)

1.5.4 S inusoidal Sequence

The sinusoidal sequence or a discrete-time sinusoid is given by

	
x n A

n

N
Ae j n N[ ] cos Re /= +æ

è
ç

ö
ø
÷ = é

ë
ù
û

+( )2 2p q p q 	 (1.49)

where
A is a positive real number and is the amplitude of the sequence
N is the period
θ is the phase
n is an integer

A typical sinusoidal sequence for A = 1, N = 12, and θ = 0 is shown in Figure 1.27.

r[n]

4

3

2

1

–3 –2 –1 0 1 2 3 4 n

FIGURE 1.26  The unit ramp sequence.

n

. . .. . .

FIGURE 1.27  A discrete-time sinusoidal sequence, x[n] = cos(πn/6).
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1.5.5 E xponential Sequence

If we sample a continuous-time exponential function x(t) = Ae−at with sampling 
period T, we obtain the sequence x[n] = Ae−anT = Aαn, with α = e−aT. Thus, the expo-
nential sequence is given by

	 x n A n[ ] = a 	 (1.50)

where
A and α are generally complex numbers
n is an integer

A typical discrete-time exponential sequence is shown in Figure 1.28. For the signal 
shown in Figure 1.28, both A and α are real numbers.

Example 1.7

If r n nu n
n n

0 n
[ ] [ ]

, 0

, 0
=

³
<

==
ì
í
î

, Find y[n] = 2r[1−n]

Solution
To obtain y[n], we replace every n in r[n] with −n + 1.

	

y n r n n u n
n n

n

n

[ ] [ ] ( ) [ ]
,

,
= - + = - + - + =

- + - + ³
- + <

ì
í
î

=
- +

2 1 2 1 1
2 2 1 0

0 1 0

2 2,,

,

n
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£
>

ì
í
î

1

0 1

Practice Problem 1.7  Given r[n] in Example 1.7, obtain z[n] = r(n + 2).

Answer: z n
n n

n
[ ]

,

,
=

+ ³ -
< -

ì
í
î

2 2

0 2

x[n]

n

FIGURE 1.28  A discrete-time exponential sequence, α > 1.
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Example 1.8

Write down expressions for the sequences shown in Figure 1.29.

Solution

We use item 5 in Table 1.2 as a general way of expressing any discrete signal. 

x n x k n k
k

[ ] [ ] [ ]= -
=-¥

¥

å d

	 (a)	 For the discrete-time signal in Figure 1.29a,

	
x n n n[ ] = ( ) + -( )d d2 3

	 (b)	 Similarly, for y[n] in Figure 1.29b,

	
y n n n n n[ ] = +[ ] + +[ ] + [ ] + -[ ]d d d d2 2 1 3 2 2

Practice Problem 1.8  Write down expressions for the sequences shown in 
Figure 1.30.

Answer: 

	 (a)	 x[n] = δ[n + 1] + 2δ[n−1]
	 (b)	 y[n] = 2δ[n + 2] + δ[n + 1] + δ[n−2] + 2δ[n−2]

y[n]

3

2

1

–2 –1 0 1 2 n–3
(b)

x[n]
2

1

–2 –1
(a)

0 1 2 3 n

FIGURE 1.29  For Example 1.8.
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1.6  BASIC OPERATIONS ON SIGNALS

We have limited ourselves to considering signals with one independent variable time 
(t) or integer [n]. We consider six basic operations or transformations on real function. 
The first three operations have to do with time, while the second three deal with trans-
formations in amplitude. The combinations of these transformations make it possible to 
obtain complex signals from the basic, standard signals. Signals that are produced by 
these transformations are useful in sonar, radar, signal processing, and communication 
systems.

1.6.1 T ime Reversal

Given a signal x(t), its time reversal is x(−t). The reversed signal x(−t) is obtained as 
a reflection of x(t) about the t = 0, that is, we perform a reflection about the vertical 
axis. (Reflection about the horizontal axis results in −x(t).) An example of this is 
shown in Figure 1.31a. In the figure, we get

	

x t

t

t t( )

,

,

,

=
- - < <
- < <
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1 1 0

1 0 2

0 otherwise

	 (1.51)

From this, we obtain x(−t) by replacing every t with −t in Equation 1.51. Hence,
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t
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ì

í
ï
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2 0

0

t

, otherwise

	 (1.52)

as evident from Figure 1.31b.

y[n]x[n]

2

1

2

1

–1 –1 0 1 2 n–20
(a) (b)

1 n

FIGURE 1.30  For Practice Problem 1.8.
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1.6.2 T ime Scaling

Time scaling involves the compression or expansion of a signal in time. Given a 
continuous-time signal x(t), the time-scaled form of x(t) is x(at), where a is a con-
stant. The scaled signal x(at) will be compressed if |a| > 1 or expanded if |a| < 1; 
a  negative value of a  yields time reversal as well as compression or expansion. 
Again, we can obtain x(at) from the signal in Equation 1.51 by replacing every t with 
at and simplifying. We show an example in Figure 1.32. Notice that the time reversal 
discussed in Section 1.6.1 can be considered a special case of time scaling with the 
scaling factor a = −1.

1.6.3 T ime Shifting

Given a continuous-time signal x(t), the time-shift form of x(t) is x(t − to), where to is 
a constant. If to > 0, then the signal x(t − to) is delayed and the signal is shifted to the 
right relative to t = 0. When to < 0, the signal x(t − to) is an advanced replica of x(t), 
with x(t) shifted to the left. Examples of x(t − 2) and x(t + 1) are shown in Figure 1.33.

x(t)

1

1

1
–1

1 2 –2 –1

–1
–1

t

t

x(–t)

(a) (b)

FIGURE 1.31  Time reversal of a signal.

x(t)

0
0 0

1
1

2
2 4

t
t t

x(0.5t) x(2t)

FIGURE 1.32  An example of time scaling.
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For any signal x(t), the transformation at +b on the independent variable can be 
performed as follows:

	
x at b x a t

b

a
+( )= +æ

è
ç

ö
ø
÷

æ

è
ç

ö

ø
÷ 	 (1.53)

where a and b are constants. This involves two steps:

	 1.	Scale by factor a. If a is negative, reflect x(t) about the vertical axis.
	 2.	 If b/a is negative, shift x(t) to the right. If b/a is positive, shift x(t) to the left.

1.6.4 A mplitude Transformations

The previous three transformations deal with the independent variable, t. Equivalent 
transformations of the amplitude of the signal will now be discussed. Given a signal 
x(t), amplitude transformations take the general form

	
y t Ax t B( ) = ( ) + 	 (1.54)

where A and B are constants. For example, let

	
y t x t( ) = - ( ) +2 4 	 (1.55)

We notice that A = −2 means amplitude reversal (−x(t) implies reflection about the 
horizontal axis) and amplitude scaling (|A| = 2). Also, B = 4 shifts vertically the 
amplitude of the signal.

x(t)
x(t – 2)

x(t + 1)

1
1 1

00–1

–1

–1

1 12 2 1 2 t3 4t t –2 –1 0

FIGURE 1.33  Time-shifted signals.
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Example 1.9

A continuous-time signal is shown in Figure 1.34. Sketch each of the following 
signals:

	 (a)	 x(2t−6), (b) x(t/2 + 1), (c) y(t) = −1 + 2x(t)

Solution

	 (a)	 We can do this in two ways:

		  Method 1: We can write this as x(2(t − 3)), indicating that x(t) is compressed 
by a factor of 2 and shifted to the right by three units. Hence, x(2t − 6) is as 
sketched in Figure 1.35a.

		  Method 2: From Figure 1.34,
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=
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ì

í
ï

î
ï

3 0 1

3 1 2

0 otherwise
	

(1.9.1)

x(t)

3

0 1 2 t

FIGURE 1.34  For Example 1.9.

x(2t – 6)
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1 2 3 4
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y(t) = –1 + 2x(t)
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FIGURE 1.35  For Example 1.9.
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		  Replacing every t with 2t − 6 gives
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		  which is what we have in Figure 1.35a.
	 (b)	 Method 1: We write x(t/2 + 1) = x(1/2(t + 2)) indicating that x(t) is expanded 

by a factor of 2 and advanced or shifted left by 2 units. The signal x(t/2 + 1) 
is sketched in Figure 1.35b.

		  Method 2: Replace every t in Equation 1.9.1 by t/2 + 1.

	

x
t

t t

t
2

1

3 2 1 0 2 1 1

3 1 2 1 2

0

+æ
è
ç

ö
ø
÷ =

+ < + <
< + <

ì

í
ï

î
ï

=

( ),

,

,

/ /

/

otherwise

11 5 3 2 0

3 0 2

0

. ,

,

,

t t

t

+ - < <
< <

ì

í
ï

î
ï otherwise

		  which agrees with the sketch in Figure 1.35b.
	 (c)	 This deals with amplitude amplification; there is no transformation of time t.

		  Method 1: The signal x(t) is amplified by 2 and lowered by −1, as shown in 
Figure 1.35c, giving −1 + 2x(t).

		  Method 2:
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otherwise

		  which agrees with what we have in Figure 1.35c.

Practice Problem 1.9  With the continuous-time signal in Figure 1.34, sketch 
each of the following signals:

	 (a)	 x(2t + 4), (b) −2x(t−1), (c) 2 + x(−t).

Answer: See Figure 1.36.
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Example 1.10

A discrete-time signal is shown in Figure 1.37. Sketch each of the following signals: 
(a) x[n−3], (b) x[−n + 3], (c) x[2n].

Solution

	 (a)	 This involves shifting x[n] three units to the right, as shown in Figure 1.38a.
	 (b)	 We can write x[−n + 3] = x[−(n − 3)], meaning that we perform a reflection 

about the vertical axis to get x[−n] and we then shift these three units to the 
right. This is shown in Figure 1.38b.

	 (c)	 This involves compressing x[n] by a factor of two, as shown in Figure 1.38c.

Practice Problem 1.10  With the discrete-time signal shown in Figure 1.37, sketch 
each of the following signals: (a) x[−n], (b) x[n + 2], (c) x[n/2]

Answer: See Figure 1.39.

x[n]

3

2

1

–1 0 1 2 3 4 5

n

FIGURE 1.37  For Example 1.10.

2+x(–t)

5

2

–2 –1(c) 0 t

–2x(t – 1)

0
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–6

(b)

1 2 3 t

x(2t + 4)

3

–2 –1 0
(a)

1 t

FIGURE 1.36  For Practice Problem 1.9.
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1.7  CLASSIFICATIONS OF SYSTEMS

As mentioned in Section 1.2, a system may be regarded as a mathematical model of 
a physical process that relates the input signal x(t) to the output signal y(t). This rela-
tionship is illustrated in Figure 1.40a. Although a system may have many input and 
output signals as shown in Figure 1.40b, we will focus our attention on the single-
input single-output case in this book.

x[2n]

3

2

1

–1 0

(c)

1 2 3 4

x[–n + 3]

3

2

1

–3 –2 –1 0

(b)

1 2 3 4 5
n n

x[n–3]

3

2

1

–1 0
(a)

1 2 3 4 5 6 7 8
n

FIGURE 1.38  For Example 1.10.
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3 4
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2
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–5 –4 –3 –2 –1 0 1 2
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FIGURE 1.39  For Practice Problem 1.10.
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If x is the input signal and y is the output signal, they are related through a 
transformation

	 y x= T 	 (1.56)

where T is an operator transforming x into y.

1.7.1  Continuous-Time and Discrete-Time Systems

A system is continuous-time if the input and output signals are continuous-time. 
It is discrete-time if the input and output signals are discrete-time. In continuous-
time systems, time is measured continuously. Some continuous-time systems are 
described by ordinary differential equations, algebraic equations (resistive circuits), 
polynomial equations (diodes), integral equations (op amp integrator circuits), etc. 
For discrete-time systems, time is defined only at discrete instants and the systems 
are described by difference equation and any other way the input–output proper-
ties of the system may be specified. Continuous-time and discrete-time systems are 
illustrated in Figure 1.41.

1.7.2  Causal and Noncausal Systems

The output of a system may depend on the present and past inputs. A system that 
has this property is known as causal system. A causal (or nonanticipatory) system 
is one whose output y(t) at the present time depends only on the present and past 
values of the input x(t).

A causal system is one whose present response does not depend on the future 
values of the input.

x

x1

x2

xn ym

y2

y1

System

System

(a)

(b)

y

FIGURE 1.40  Block diagram representation: (a) system with single-input and single-output 
and (b) system with many inputs and outputs.
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Examples of causal systems are

	
y t x t( ) = -( )1 	 (1.57)

	
y n x

n
éë ùû = é

ëê
ù
ûú2

	 (1.58)

Every physical system is causal. The motion of a car is causal since it does not expect 
the future actions of the driver. Causality is a necessary condition for a system to be 
realized in the real world we live in. Causal systems are physically realizable.

If a system is not causal, it is said to be noncausal or anticipatory. Typical exam-
ples of noncausal systems are

	
y t x t( ) = +( )2 	 (1.59)

	
y n x néë ùû = -éë ùû1 	 (1.60)

The system in Equation 1.59 is not causal because the output at, say t = 0, is equal to 
input at t =2. This is not physically realizable. The same logic applies to the system 
in Equation 1.60.

An ideal filter is noncausal and is not physically realizable; it cannot be built in 
practice. It should be noted that causality is not often an essential constraint in appli-
cations in which the independent variable is not time, such as in image processing.

x(t)

x[n] y[n]

System
T

System
T

y(t)

(a)

(b)

FIGURE 1.41  Block diagram representing (a) a continuous-time system and (b) a discrete-
time system.
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1.7.3 L inear and Nonlinear Systems

Linearity is the property of the system describing a linear relationship between 
input (cause) and output (effect). The property is a combination of both homogeneity 
(scaling) property and the additivity property.

The homogeneity property requires that if the input is multiplied by any constant 
k, then the output is multiplied by the same constant, that is,

	
T kx ky{ } = 	 (1.61)

The additivity property requires that the response to a sum of inputs is the sum of 
the responses to each input applied separately. If Tx1 = y1 and Tx2 = y2, then

	
T x x y y1 +{ } = +2 1 2 	 (1.62)

We can combine Equations 1.61 and 1.62 as

	
T k x k x k y k y1 1 2 2 1 2+{ } = +1 2 	 (1.63)

where k1 and k2 are constants.

A linear system meets the two conditions in Equations 1.61 and 1.63, that is, 
a system is linear if it satisfies homogeneity and additivity properties.

A linear system may be regarded as one in which all the interrelationships 
among the quantities involved are expressed by linear equations, which may be 
algebraic, differential, or integral. A very important consequence of linearity is that 
superposition principle applies. If an input consists of the weighted sum of several 
signals, then the output is the weighted sum of the responses of the system to each 
of those signals.

An example of a linear system is a circuit that contains resistors, capacitors, and 
inductors, since these are linear elements. Devices such as rectifiers, diodes, and 
saturating magnetic devices are nonlinear. A system having even one such device is 
treated as nonlinear. Examples of nonlinear systems are

	 y x= sin 	 (1.64)

	 y x= 3 	 (1.65)
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1.7.4 T ime-Varying and Time-Invariant Systems

When one or more parameters of the system vary with time, the system is said to 
be time-varying.

A time-varying system is one whose parameters vary with time.

For continuous-time, time-varying systems are described by time-varying differ-
ential equations. For discrete-time, time-varying systems are described by time-
varying difference equations. If all system parameters are constant with time, the 
system is said to be time-invariant or fixed.

In a time-invariant system, a time shift (advance or delay) in the input signal 
leads to the time shift in the output signal.

For a continuous-time system, the system is time-invariant when

	 T x t y t{ ( )} ( )- = -t t 	 (1.66)

where τ is a constant. Consider the input x(t) of a linear system yielding an output y(t). For 
the system to be time-invariant, a shifted input x(t − τ) should result in a shifted output 
y(t − τ). Figure 1.42 shows an example of time-invariant system, while Figure 1.43 gives 
an example of time-varying system.

For a discrete-time system, the system is time-invariant when

	
T x n m y n m-éë ùû{ } = -éë ùû 	 (1.67)
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y(t–τ)

t2+ τ
t3+ τt

t
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t2 t

FIGURE 1.42  An example of a time-invariant system.
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for any integer m. A continuous-time/discrete-time system that does not satisfy 
Equation 1.63 or 1.64 is time-varying. Such a system has parameters that vary 
with time. We will confine our efforts to linear time-invariant (LTI) systems in 
this book.

1.7.5 S ystems with and without Memory

When the output of a system depends on the past and/or future input, the system is 
said to have a memory. For example, a system described by

	
y t x t x t x t( ) = ( ) -( ) + +( )– 1 2 	 (1.68)

has a memory since the output y(t) requires the past input x(t − 1), the current input 
x(t), and the future input x(t + 2).

If the output of a system does not depend on the past and/or future input, the sys-
tem is memoryless (or instantaneous).

A memoryless system is one in which the current output depends only on the 
current input; it does not depend on the past or future inputs.

A system with a memory is also called a dynamic system. A memoryless sys-
tem is called a static system. Many practical systems such as resistive networks, 
amplifiers, operational amplifiers, and diodes are usually modeled as memoryless 
systems.
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FIGURE 1.43  An example of a time-varying system.
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Example 1.11

Show that the system represented by

	

dy
dt

y t x t+ =4 2( ) ( ) 	 (1.11.1)

is linear.

Solution

To prove that the system is linear, we need to show that Equation 1.63 is satisfied. Let 
the inputs x1(t) and x2(t) cause the system responses y1(t) and y2(t), respectively, that is,

	

dy
dt

y t x t1
1 14 2+ =( ) ( ) 	 (1.11.2)

	

dy
dt

y t x t2
2 24 2+ =( ) ( ) 	 (1.11.3)

Multiplying Equation 1.11.2 by a constant A and Equation 1.11.3 by constant B and 
adding, we get

	

d
dt

Ay By Ay By Ax Bx1 2 1 2 1 24 2+éë ùû+ +éë ùû = +[ ]

This satisfies the system equation (1.11.1) with

	

x Ax Bx

y Ay By

= +
= +

1 2

1 2

(The time dependence is dropped for simplicity.) In other words, with the input as 
x = Ax1 + Bx2, the response is y = Ay1 + By2. Superposition holds and we conclude 
that the system is linear.

Practice Problem 1.11  Show that the system described by

	
y t x t( ) = ( )2 5–

is nonlinear.

Answer: Proof: a part of the output signal does not depend on the input signal.

Example 1.12

A modulator with carrier frequency of ωc gives an output

	 y t x t tc( ) ( ) cos= w
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Determine whether the system is (a) memoryless, (b) causal, or (c) time-invariant.

Solution

	 (a)	 The system is memoryless since the output y(t) depends only on the present 
values of the input x(t), that is, the output is a function of the input at only 
the present time.

	 (b)	 It is causal since the output y(t) does not depend on the future values of the 
input x(t). Since it is memoryless, it is also causal.

	 (c)	 To be time-invariant, an input x(t − T) should produce an output y(t − T). Let 
the input signal xo(t−to) produce an output signal yo. Then

	 y t x t t to o c( ) ( ) cos= - w

	 But we know that

	 y t t x t t t t yo o c o o( ) ( ) cos ( )- = - - ¹w

		  The system fails to satisfy the time-invariance property of Equation 1.66. 
Hence it is not time-invariant. It is time-varying.

Practice Problem 1.12  Consider the system represented by y(t) = x(t − 3). Discuss 
the properties of the system, that is, check whether it is memoryless, causal, and 
time-invariant.

Answer: Not memoryless, causal, and time-invariant.

1.8  APPLICATIONS

The information covered in this chapter is useful in many systems such as mass-
spring-damper system, moving average filter, stock trading, electrical circuits, 
square-law device, and digital signal processing (DSP). We will briefly consider 
three simple applications related to what we have covered in this chapter. These 
applications deal with electric circuits, square-law device, and DSP system.

1.8.1 E lectric Circuit

Electric circuits are mostly linear systems. Consider the one shown Figure 1.44. 
Our objective is to find the system equation for it. By applying Kirchhoff’s voltage 
law, we obtain

x(t)
+

+

–

L

–

R i(t)

y(t)

FIGURE 1.44  An electric circuit.
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x t Ri t y t( ) = ( ) + ( ) 	 (1.69)

But i t
L

y d
t

( ) ( )=
-¥ò1 l l. Substituting this in Equation 1.69,

	

y t x t
R

L
y d

t

( ) ( ) ( )= -
-¥
ò l l 	 (1.70)

Or we may differentiate this to get

	

dy t

dt

R

L
y t

dx

dt

( )
( )+ = 	 (1.71)

This is an explicit input–output relationship between x(t) (source voltage) and y(t) 
(inductor voltage).

1.8.2 S quare-Law Device

A square-law device is a device where either current or voltage depends on the square 
of the other. The input–output relationship is given by

	 y t x t( ) ( )= 2 	 (1.72)

Any system that is defined by Equation 1.72 is called a square-law device. To realize 
this system, we use a signal amplifier, as shown in Figure 1.45. For this reason, the 
square-law detector is also called a signal multiplier. It can be built using operational 
amplifiers and diodes. It is evident from Equation 1.72 that the system is nonlinear 
and memoryless. A square-law device is often found in the receiver front end of 
radar and communication devices.

1.8.3 DS P System

Since most signals are analog in nature, an analog signal can be processed 
directly in its analog form, as shown in Figure 1.46. DSP provides an alternative 

x(t)
X

y(t) = x2(t)

FIGURE 1.45  A square-law detector.
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means of processing the analog signal, as shown in Figure 1.47. DSP techniques 
are replacing analog signal processing in many fields such as telecommunica-
tions; radar and sonar; digital control; speech, audio, and video processing; and 
biomedicine. One main reason for preferring DSP is that, it allows program-
mability, which means that the same DSP hardware can be used for different 
applications.

A DSP is a special microprocessor designed for DSP. Most DSPs can be 
used to manipulate different kinds of information including sound, images, and 
video. The goal of a DSP is to process real-world analog signals. As illustrated in 
Figure 1.47, the first step is to convert the analog signal to digital signal using an 
ADC. The ADC quantizes the sampled analog signal and codes the quantized 
signal into an acceptable format. It is common for the sequence coming from 
the ADC to be converted back to analog to drive a motor, a stereo system, or 
whatever. The conversion of the digital sequence to an analog signal requires a 
digital-to-analog converter (DAC). Most PCs include ADCs and DACs in their 
sound card. In these modern days, DSP systems such as high-speed modems and 
cell phones are common.

1.9  COMPUTING WITH MATLAB®

A brief introduction to MATLAB is given in Appendix C. The reader is encouraged 
to read Appendix C before proceeding with this section.

MATLAB provides built-in functions for unit step function u(t) and unit impulse 
function δ(t). The unit step function is called Heaviside or stepfun, while the 
impulse function is Dirac. Heaviside(t) is zero when t < 0, 1 for t > 0 and 0.5 for t = 0. 
stepfun(t,t0) returns a vector of the same length at t with zeros for t < t0 and ones 
for t > t0. stepfun(n,n0) works the same way for discrete signals. Dirac(t) is zero for 
all t, except t = 0, where it is infinite.

Analog
signal

processing
Analog
signal

Analog
signal

FIGURE 1.46  Analog signal processing.

Analog Analog
ADC

Signal Signal

Digital

Signal Signal

Digital
DSP
chip DAC

FIGURE 1.47  Digital signal processing.
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MATLAB treats continuous-time signals differently from discrete-time signals. 
We will treat them separately in the following two examples.

Example 1.13

Use MATLAB to plot

	 (a)	 The signal x(t) = 10e−0.5tsin(4πt)​ + 20e−tsin(2πt)
	 (b)	 The step function starting at t = 1 and going right

Solution

	 (a)	 The MATLAB code is shown in the following:
	 t = 0.1:2*pi/100:2*pi % t ranges from 0.1 to 2*pi
	� x =10* exp(-0.5*t).*sin(4*pi*t) + 20*exp(-t).*sin(2*pi*t); % 

generates values for x
	 plot(t,x); %plot the signal
	 xlabel( ‘t in seconds’)
	 ylabel(‘signal x(t)’)

		  We let t vary from 0.1 to 2π s, with an increment of 2π/100 s. Note the use 
of the .* operator. The terms 10*exp(−0.5*t), 20*exp(−t).* are all vectors. We 
use .* instead of * because we want the components of these vectors to be 
multiplied by their corresponding components of the other vectors. Thus, 
element-by-element operations require a dot before the operator. The plot 
is presented in Figure 1.48a.

	 (b)	 The MATLAB script for this case is presented as follows:
	 t = 0:0.1:5
	 t0 = 1;
	 u = stepfun(t,t0);
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FIGURE 1.48  (a) For Example 1.13a and b for Example 1.13b.� (Continued )
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	 plot(t,u)

	 As shown in Figure 1.48b, the plot is a delayed unit step, that is, u(t − 1).

Practice Problem 1.13  Using MATLAB, plot the signal

	 x t e tt( ) cos( . . ).= +-0 2 0 5 1 2 , 0 < t < 20 s.

Answer: See Figure 1.49.
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FIGURE 1.48 (Continued)  (a) For Example 1.13a and b for Example 1.13b.

0
–0.5

–0.4

–0.3

–0.2

–0.1

Si
gn

al
 x

(t) 0

0.1

0.2

0.3

0.4

2 4 6 8 10 12 14 16 18 20
t(s)

FIGURE 1.49  For Practice Problem 1.13.
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Example 1.14

Using MATLAB, plot the following discrete signals:

	 (a)	 x n

n

n

n

n

[ ]

,

,

,

,

,

=

=
=

- =
=

ì

í

ï
ïï

î

ï
ï
ï

1 0

3 1

2 3

2 4

0 otherwise

	 (b)	 f[n] = A(α)n  with  A = 5, α = −0.6

Solution

	 (a)	 A plot of this discrete signal is generated by the following MATLAB 
commands:

	 n=-3:1:5; % n = -3, -4,…,4,5
	 x=[ 0 0 0 1 3 0 -2 2 0 ];
	 stem(n,x);
	 xlabel(‘n’);
	 ylabel( ‘x[n]’);
	       grid;

		  The plot is shown in Figure 1.50a.
	 (b)	 The MATLAB code for generating and plotting the discrete signal is as 

follows:
	 n=-5:1:5;
	 f=5*(-0.6).^n;
	 stem(n,f);
	 xlabel(‘n’);
	 ylabel(‘f(n)’);
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FIGURE 1.50  (a) For Example 1.13a.� (Continued)
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		  The plot is shown in Figure 1.50b. Notice that f[n] is an alternating exponen-
tial sequence.

Practice Problem 1.14  Use MATLAB to plot the following discrete signals:

	 (a)	 y n
n

[ ] sin= æ
è
ç

ö
ø
÷10

2
16
p

 for n = 0 to 32.

	 (b)	 The exponential sequence in Example 1.12b multiplied by a step sequence.

Answer: See Figure 1.51.
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FIGURE 1.50 (Continued)  (b) For Example 1.13b.
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1.10  SUMMARY

	 1.	A signal is a set of data or function that represents a variable of interest.
	 2.	A system is a device, process, or algorithm that operates on input signal to 

yield an output signal.
	 3.	A signal may be classified in many ways:
	 a.	 A continuous-time signal x(t) has a value specified at all time, whereas a 

discrete-time signal x[n] is specified only at a finite set of time instants.
	 b.	 A periodic signal repeats itself after period T, that is, x(t + T) = x(t). An 

aperiodic signal is one that is not periodic.
	 c.	 An analog signal is one that can take on any value over a continuum; 

a digital signal can only take a finite number of values.
	 d.	 A signal x(t) or x[n] is an energy signal if and only if 0 < E < ∞ and con-

sequently P = 0, that is, it has finite energy. A signal x(t) or x[n] is a power 
signal if and only if 0 < P < ∞ and consequently E = ∞; it has finite power.

	 e.	 A signal is even if x(t) = x(−t); it is odd if x(t) = −x(−t).
	 4.	Examples of standard signals are the singularity functions, which include the 

unit impulse δ(t) or δ[n], the unit step u(t) or u[n], and the unit ramp r(t) or r[n]. 
The sifting property of the impulse function is

	

f t t t dt f to

a

b

o( ) ( ) ( )d - =ò
		  In addition to the singularity functions, we consider the unit rectangular func-

tion Π(t/τ), the unit triangular function Λ(t/τ), the sinusoidal function, and the 
exponential function.
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FIGURE 1.51 (Continued)  (b) For Practice Problem 1.14b.
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	 5.	The following operations can be performed on a signal:
	 a.	 A signal x(−t) is the time reversal of x(t); it is obtained by reflecting x(t) 

about t = 0.
	 b.	 The signal x(at) is compressed if a > 1 or expanded if a < 1.
	 c.	 A signal x(t − to) is delayed by to seconds, while the signal x(t + to) is 

advanced by to seconds, assuming to > 0.
	 d.	 Amplitude transformations take the general form of y(t) = Ax(t) + B.
	 6.	A system may be classified in many ways:
	 a.	 A system is continuous-time if the input and output signals are 

continuous-time; it is discrete-time if the input and output signals are 
discrete-time.

	 b.	 A system is causal if its present response does not depend on the future 
values of the input; it is noncausal otherwise.

	 c.	 A system is linear if it is characterized by the linearity property; it is non-
linear if the superposition does not hold.

	 d.	 A system is time-varying if its parameters change with time; it is time-
invariant if its parameters do not change with time.

	 e.	 A memoryless system is one in which the current output depends only on 
the current input; a system with memory is one whose output depends on 
the present and past or future inputs.

	 7.	Specific applications considered in this chapter are electric circuits, square-
law device, and DSP system.

	 8.	MATLAB can be used to process continuous-time and discrete-time 
signals.

REVIEW QUESTIONS

  1.1  Which of the following is not a signal?
	 (a)	 Voltage, (b)� blood, (c) torque, (d) pressure, (e) displacement
  1.2  Any set of mathematical relationships between input and output variables con-

stitutes a system.
	 (a)	 True, (b) false
  1.3  Which of the following is not a system?
	 (a)	 Automobile speed, (b) a circuit, (c) a camera, (d) a computer program
  1.4  The exponential signal is
	 (a)	� A power signal, (b) an energy signal, (c) neither a power nor an energy signal
  1.5  The signals δ(t), u(t), and r(t) are known as
	 (a)	� Transformation functions, (b) expansion functions, (c) singularity func-

tions, (d) basic functions
  1.6  Which of these is not true?
	 (a)	 t2δ(t) = 0
	 (b)	cos(t)δ(t) = δ(t)
	 (c)	 sin(t)δ(t−π) = δ(t−π)

	 (d)	 ( ) ( )2 1 12t t dt+ =
-¥

¥

ò d
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1.7	  Given the signal x(t), which of the following is true for signal x(2t + 8)?
	 (a)	 x(t) shifted to the left by eight units
	 (b)	x(t) is compressed by a factor of 2 and then shifted left by four units
	 (c)	 x(t) is expanded by a factor of 2 and then shifted right by four units
	 (d)	x(t) is reflected about the vertical axis and then shifted
1.8	  A system is described by y(t) =cos x(t) + 2 sin x(t − 1). It is
	 (a)	 Causal, (b) noncausal, (c) memoryless, (d) with memory
1.9	  Causal systems are also referred to as physically realizable systems.
	 (a)	 True, (b) false
1.10	  The impulse function in MATLAB is
	 (a)	 Heaviside, (b) stepfun, (c) Dirac, (d) stem

Answers: 1.1(b), 1.2(a), 1.3(a), 1.4(c), 1.5(c), 1.6(c), 1.7(b), 1.8(a,d), 1.9(a), 1.10(c).

PROBLEMS

Section 1.3—Classifications of Signals

  1.1  Show that the complex sinusoidal signal x t Ae j to( ) = w  is periodic.
  1.2  Find the energy content of

	

x t
e t

t

t

( )
,

,
=

³
<

ì
í
ï

îï

-3 0

0 0

and determine whether it is a power or energy signal.
  1.3  Let

	

x t
e t tt

( )
sin ,

,
=

³ì
í
ï

îï

-2 0

0 otherwise

calculate the energy content of the signal.
  1.4  Find out if the following signals are power or energy signals or neither:
	 (a)	 x(t) = 10 sin 2πt

	 (b)	 y t u t u t( ) = ( ) -( )éë ùû2 4–
	 (c)	 z(t) = r(t)–r(t−2)
	 (d)	h(t) = 10e2t

  1.5  Repeat Problem 1.4 for the following signals:
	 (a)	 x(t) = e−3tu(t)
	 (b)	x(t) = (e−2t + 1)u(t)
	 (c)	 x(t) = t−1/2u(t−2)

Section 1.4—Basic Continuous-Time Signals

  1.6  Express the signals in Figure 1.52 in terms of the unit step function.
  1.7  Express the signals in Figure 1.53 in terms of the unit step and unit ramp 

functions.
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  1.8  If x t

t
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t t
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ï
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0 6

Express x(t) in terms of singularity functions.
  1.9  (a) Express x(t) in Figure 1.54 in terms of the unit step function.
	 (b)	Sketch the derivative of x(t).

x(t)
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FIGURE 1.52  For Problem 1.6.

x(t)
y(t)

4

00 22 44 tt

–3
–5

(a) (b)

10

FIGURE 1.53  For Problem 1.7.
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FIGURE 1.54  For Problem 1.9.
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1.10  Express x(t) and y(t) in Figure 1.55 in terms of the step function.
1.11  Using Euler relation, prove the following trig identities:
	 (a)	 cos2t = ½(1 + cos 2t)
	 (b)	sin(x + y) = sin x cos y + cos x sin y
	 (c)	 sin x sin y = ½ cos(x−y)−½ cos(x + y)
1.12  Evaluate the following:

	 (a)	 e t dtj t-

-¥

¥

-ò w d( )3

	 (b)	 exp( ) ( )t t t dt2 2 1 2- + -
-¥

¥

ò d

	 (c)	 5 2d d p d( ) ( ) cos ( )t e t t t dtt+ +éë ùû
-

-¥

¥

ò
1.13  Evaluate the following integrals:

	 (a)	 u d

t

( )l l
1
ò

	 (b)	 r t dt( )-ò 1
0

4

	 (c)	 ( ) ( )t t dt- -ò 6 22

0

4

d

	 (d)	 2 43

4

4

t t dt
-
ò -d( )

1.14  Evaluate the following derivatives:

	 (a)	
d

dt
u t u t( ) ( )- +éë ùû1 1

	 (b)	 d

dt
r t u t( ) ( )- -éë ùû6 2

	 (c)	 d

dt
tu tsin ( )4 3-éë ùû

y(t)

11
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x(t)

(a) (b)

FIGURE 1.55  For Problem 1.10.
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Section 1.5—Basic Discrete-Time Signals

1.15  Sketch the following discrete-time signals:
	 (a)	 x[n] = 4(−0.9)n, n ≥ 0
	 (b)	x[n] = 2(1.2)n, n ≥ 0
	 (c)	 x[k] = (0.8)k sin(2πk/8), k ≥ 0

1.16  Sketch x n
nn
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0 otherwise
1.17  Sketch the following discrete-time signals:
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0 otherwise
	 (c)	 x[n] = 2 sin(n/4)cos(nπ/8)
1.18  Sketch the following signals:
	 (a)	 x[n] = u[n−2]
	 (b)	y[n] = u[n + 2]
	 (c)	 z[n] = u[n]–u[n−4]
1.19  Sketch the following discrete-time signals:
	 (a)	 x[n] = x[n] + u[−n]
	 (b)	x[n] = u[3n]
	 (c)	 x[n] = 10 sin(2πn/20)
1.20  Represent the signal in Figure 1.56 as a sum of impulses.

Section 1.6—Basic Operations on Signals

1.21  Let x(t) = 10e4−3t. Evaluate and simplify each of the following:
	 (a)	 x(2)
	 (b)	x(1 − t)

x[n]

4
3

0 1 2 3 –1.5
n

FIGURE 1.56  For Problem 1.20.
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	 (c)	 x(t/4 +1)
	 (d)	½[x( jt) + x(−jt)]
1.22  Given the signal x(t) shown in Figure 1.57, sketch (a) x(t/2) and (b) x(1 + t/2).

1.23  If x t
t t

( )
,

,
=

+ < <ì
í
î

1 0 4

0 otherwise
, sketch (a) x(t) and (b) y(t) = 1 + x(2t).

1.24  If x(t) is the signal shown in Figure 1.58, sketch (a) x(t − 2), (b) x(3t), and 
(c) y(t) = 1 + 2x(t).

1.25  Sketch each of the following continuous-time signals and their derivatives:
	 (a)	 x(t) = u(t)–u(t−1) and dx/dt
	 (b)	y(t) = u(t + 1)–2u(t) + u(t−1) and dy/dt

	 (c)	 z t t u t u t( ) = +( ) -( )éë ùû1 1–  and dz/dt

1.26  Given that x(t) = u(t)–u(t−1), sketch
	 (a)	 y(t) = x(−t)
	 (b)	y(t) = x(3−t)
	 (c)	 y(t) = x(t−3)
1.27  If x(t) = Π(t + 2) + Π(t−2), sketch
	 (a)	 y(t) = x(t−2)
	 (b)	y(t) = x(t + 1)–x(t−1)
1.28  Sketch these signals:

	 (a)	u t -( )éë ùû1 2/

	 (b)	r[4−2t]
	 (c)	 Π(−2t + 1)
	 (d)	L t -( )éë ùû1 3/

0 2 t1

1

x(t)

FIGURE 1.57  For Problem 1.22.

x(t)

2

0 1 2 3 t

FIGURE 1.58  For Problem 1.24.
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1.29  Given x(t) in Figure 1.59, sketch
	 (a)	 y(t) = − x(t−1)
	 (b)	z(t) = 4x(t/2)
	 (c)	 h(t) = x(2−t)
1.30  Given the two signals x1(t) and x2(t) in Figure 1.60, sketch the following:
	 (a)	 y(t) = x1(t) + x2(t)
	 (b)	z(t) = 0.5x1(2t) + x2(t)
	 (c)	 h(t) = x1(t−1)−x2(1−t)
1.31  Given the discrete-time signal in Figure 1.61, sketch the following signals:
	 (a)	 y[n] = x[n−3]
	 (b)	z[n] = x[n]–x[n−1]
1.32  Consider the discrete-time signal in Figure 1.62. Sketch the following signals:
	 (a)	 x[n]u[2−n]

	 (b)	x n u n u n[ ] +[ ] - [ ][ ]1

	 (c)	 x[n]δ[n−2]

Section 1.7—Classifications of Systems

1.33  Show that the system described by the differential equation

	

dy t

dt
ty t x t

( )
( ) ( )+ =2

is linear.

x(t)

4

0

–4

–2 2 t

FIGURE 1.59  For Problem 1.29.

x1(t) x2(t)

1

0
–1

t20

4

1 2 t

FIGURE 1.60  For Problem 1.30.
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1.34  Show that the system described by the differential equation

	

dy t

dt
y t x t

( )
( ) ( )+ + =4 1

is nonlinear.
1.35  Which of the following systems can be classified as linear/nonlinear, 

time-varying/time-invariant?

	 (a)	 d y t

dt
ty t f t

2

2 2
( )

( ) ( )+ =

	 (b)	d y t

dt
y t

dy t

dt
y t f t

2

2 4
( )

( )
( )

( ) ( )+ + =

	 (c)	 d y t

dt

d y t

dt

dy t

dt
y t

df t

dt
f t

4

4

3

35 2 4
( ) ( ) ( )

( )
( )

( )- + - = -

	 (d)	 t
d y t

dt
y t f t2

2

2
2( )
( ) ( )+ =

x[n]

2

1

1 2

–1–1

–1–2–3–4 4 n0 3

FIGURE 1.62  For Problem 1.32.

x[n]

2

1

4 n3210

–1–2

–1

–2

–3

FIGURE 1.61  For Problem 1.31.
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1.36  Determine which of the following systems is linear:

	 (a)	 y t x t( ) = ( )éë ùûexp
	 (b)	y(t) = cos x(t)
	 (c)	 y(t) = t2x(t)
1.37  Determine which of the following systems is linear or nonlinear:

	 (a)	 dy

dt
y t x t+ =( ) ( )2

	 (b)	 dy

dt
y t x t

æ
è
ç

ö
ø
÷ + =

2

( ) ( )

	 (c)	 y t x d

t

( ) ( )=
-¥
ò l l

1.38  Determine whether the discrete-time system described by y[n] = nx[n] is 
time-varying.

1.39  Determine whether the following systems are causal or noncausal, memoryless 
or with memory.

	 (a)	 y(t) = ex(t)sin t

	 (b)	 y t x d
t

( ) ( )= ò t t t
0

1.40  Consider the integrator

	

y t x d

t

( ) ( )= ò l l
0

Check for time-invariance.
1.41  Show whether the following systems are time-invariant:
	 (a)	 y(t) = tx(t) + 5
	 (b)	y[n] = x2[n]

Section 1.8—Applications

1.42  The unit delay element is shown in Figure 1.63a. Determine the input–output 
relation for the system in Figure 1.63b.

1.43  Write the differential equation for i(t) in the circuit of Figure 1.64. Assume that 
the capacitor is initially uncharged and that the switch closes at t = 0.

1.44  Write the system equation for the electric circuit of Figure 1.65.
1.45  Consider the RC circuit in Figure 1.66. Obtain the relationship between the 

input x(t) and the output y(t).

Section 1.9—Computing with MATLAB®

1.46  Determine the numeric value of x in each of the following MATLAB 
instructions:

	 (a)	 t = pi/3; x = cos(t)
	 (b)	t = 1:4; x = 2*sin(t)
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y[n]= x [n – 1]

y[n]

x[n]

(a)

(b)

Unit
delay

Unit
delay

x[n] +

FIGURE 1.63  For Problem 1.42.

y(t)

+

+

–

–

R

x(t) C

FIGURE 1.66  For Problem 1.45.

t = 0

–

+
Vs

R

i(t)

C

FIGURE 1.64  For Problem 1.43.

2Ω 3Ω

1Ω y(t)
x(t)

+
+

–

– 4Ω

FIGURE 1.65  For Problem 1.44.
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1.47  A signal is given by

	
x t

t t
( )

cos(3000 ), 0 10ms

0, otherwise
=

< <ì
í
î

p

Use MATLAB to plot the signal.
1.48  Use MATLAB to plot the signal 

	

y t

t t

t t t( )

2 , 0 1

1
2

( 4 3), 1 3

0, otherwise

2=

< <

- + < <

ì

í
ïï

î
ï
ï

1.49  Use MATLAB to plot these discrete-time signals:
	 (a)	 x[n] = 10(0.7)n, n ≥0
	 (b)	y[n] = 10(1.2)n, n ≥ 0
1.50  Use MATLAB to plot the following signals over −2 ≤ t ≤ 4 s:
	 (a)	 x(t) = 2 r(t)
	 (b)	y(t) = 5e−2t u(t)
	 (c)	 z(t) = 4 cos4t + 2 sin(2t − π/4)
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2 Convolution

The reason why we have two ears and only one mouth is that we may listen the more 
and talk the less.

—Zeno

ENHANCING YOUR COMMUNICATION SKILLS

Ability to communicate effectively is regarded by many as the most important step to an executive
promotion.

Taking a class in signals and systems is a means to preparing yourself for a career in 
electrical engineering. Enhancing your communication skills while in school should 
also be part of that preparation because, as an engineer, a large part of your time will 
be spent in communicating. No matter how hard you try, you cannot avoid commu-
nication. Virtually everyone communicates and interacts at work. Communication 
skills will be essential to your success as an engineer.

ABET (Accreditation Board for Engineering and Technology) requires that gradu-
ates of engineering programs possess an ability to communicate effectively. It has been 
observed that graduating students are poorly prepared with respect to communication 
skills. It has also been observed that the ability to communicate is the most important 
factor to promotion, more important than motivation, education, and hard work.
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Communication is the process of information transfer between the sender and 
the receiver through a medium. Oral, written, and graphical communication compe-
tence is an important professional skill for engineers. Professional engineers apply 
communication skills for many purposes, for example, emailing messages, describ-
ing solutions, pitching ideas, reporting experiments, discussing work with collabora-
tors or customers, and presenting papers at conferences.

Effective communication is a learned skill. It takes times and effort to develop 
these skills and become an effective communicator. Developing the skills while in 
school is highly recommended. Look for continuing opportunities to develop and 
strengthen your reading, writing, listening, and speaking skills. You can do this 
through classroom presentations, team projects, active participation in student orga-
nizations, and enrolment in communication courses. Learn to write good laboratory 
reports in terms of grammar, spelling, accuracy, and coherence. The risks are less 
here than in the workplace. Effective communication can improve relationships at 
home, at workplace, and in social situations.

2.1  INTRODUCTION

As we saw in Chapter 1, a system may be regarded as a process that transforms an 
input signal into an output signal. The system must be capable of accepting input 
signals, operating on them, and producing output signals. The behavior of the system 
can be described mathematically either in the time domain, as is done in this chapter, 
or in the frequency domain, as in later chapters.

In this chapter, we will seek to understand a technique called convolution, which 
is a tool for time-domain analysis of systems. We will learn how to apply it in finding 
the response of LTI (linear, time-invariant) systems to input signals. The reason we 
limit our discussion to LTI systems is twofold. First, several physical systems can be 
modeled as LTI systems. Second, no general procedures exist for non-LTI systems. 
LTI systems can be analyzed in great detail because standard procedures are already 
available.

We will begin with applying convolution to continuous-time systems; we later 
will apply it to discrete-time systems. We use MATLAB® for evaluating the convo-
lution of two signals. We will finally show how convolution can be applied in deter-
mining system stability and analyzing electric circuits.

2.2  IMPULSE RESPONSE

We recall from Chapter 1 that if x(t) is the input signal and y(t) is the output signal or 
response of a system, they are related through a transformation

	 y t x t( ) ( )= T 	 (2.1)

where T is an operator transforming x(t) into y(t). The impulse response h(t) is the 
response of the system when the input is the unit impulse function δ(t), that is,

	 h t t( ) ( )= T d 	 (2.2)
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The impulse response to an LTI system is the output of the system to a unit impulse 
function.

From Table 1.1, the input x(t) can be expressed as

	

x t x t d( ) ( ) ( )= -
-¥

¥

ò t d t t 	 (2.3)

where τ is a dummy variable. Equation 2.3 is the sifting property of the unit impulse.
The response y(t) to the input x(t) is obtained by combining Equations 2.1 and 2.3:

	

y t x t x t d

x t d

( ) ( ) ( ) ( )

( ) ( )

= = -
ì
í
ï

îï

ü
ý
ï

þï

= -{ }

-¥

¥

-¥

¥

ò

ò

T T

T

t d t t

t d t t

	

(2.4)

in which the interchange of operations is allowed by virtue of the system’s linearity. 
Since we are assuming that the system is time-invariant, Equation 2.2 implies that

	
h t t( ) ( )- = -{ }t d tT 	 (2.5)

From Equations 2.4 and 2.5, we get

	

y t x h t d( ) ( ) ( )= -
-¥

¥

ò t t t 	 (2.6)

This shows that an LTI system is characterized by its impulse response.

2.3  CONVOLUTION INTEGRAL

Equation 2.6 is known as the convolution integral or superposition integral. The 
convolution integral occurs frequently in science, mathematics, and engineering. 
The convolution of two signals x(t) and h(t) is usually written in terms of the 
operator * as

	

y t x t h t x h t d( ) ( )* ( ) ( ) ( )= = -
-¥

¥

ò t t t 	 (2.7)
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that is, y(t) equals x(t) convolved with h(t). The asterisk denotes convolution in this 
chapter and should not be confused with complex conjugate. A block diagram illus-
tration of convolution is given in Figure 2.1.

We can split the integral in Equation 2.7 into two parts:

	

y t x t h t x h t d x h

t

y

o

zir

( ) ( )* ( ) ( ) ( ) ( ) (= = - +
-¥
ò t t t t

� ������� �������

tt d y t y t
t

y

zir zsr

o

zsr

- == +
¥

ò t t) ( ) ( )

� ������� �������

	 (2.8)

where
yzir(t) is the zero-input response (or the natural response) of the system
yzsr(t) is the zero-state response (or the forced response) of the system
to is the initial time

Thus, the complete response of a physical system is divided into the zero-input 
response and the zero-state response.

The convolution integral in Equation 2.7 is a general one. It applies to any LTI 
system. However, the convolution integral can be simplified if we assume that a sys-
tem has two properties. First, if x(t) = 0 for t < 0, then

	

y t x h t d x h t d( ) ( ) ( ) ( ) ( )= - = -
-¥

¥ ¥

ò òt t t t t t
0

	 (2.9)

Second, if we assume that the system is causal, h(t) = 0 for t < 0, then

h(t − τ) = 0 for t − τ < 0 or τ > t, so that Equation 2.9 becomes

	

y t x t h t x h t d

t

( ) ( )* ( ) ( ) ( )= = -ò t t t
0

	 (2.10)

Some important properties of the convolution integral are listed in Table 2.1.
Property #1 states that the order in which two functions are convolved is unim-

portant. We will see shortly how to take advantage of this commutative property 
when performing graphical computation of the convolution integral.

Another important property of the convolution integral is the width property. 
If the durations of x(t) and h(t) are T1 and T2, respectively, then the duration of 
y(t) = x(t)*h(t) is T1 + T2, as illustrated in Figure 2.2. If the areas under x(t) and h(t) are 
A1 and A2, respectively, then the area under y(t) = x(t)*h(t) is A1A2. That is,

	 Area under Area under x area undery t t h t( ) ( ) ( )= ´ 	 (2.11)

x(t)

h(t)

y(t) = x(t)*h(t)LTI
system

δ(t)

FIGURE 2.1  An illustration of convolution in an LTI system.
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Of course, this does not hold for signals extending to ±∞.
We can also add that if

	 x x y tt t1 2( )* ( ) ( )=

then

	 x t t x t y t t1 1 2 1( )* ( ) ( )+ = + 	 (2.12)

	 x x y t t tt t t t1 2 1 21 2( )* ( ) ( )+ + = + + 	 (2.13)

	 y at ax at x at a( ) ( )* ( ), ( )= >1 2 0 time scaling 	 (2.14)

	 y t x t x t( ) ( )* ( ) ( )- = - -1 2 time reversal 	 (2.15)

TABLE 2.1
Properties of the Convolution Integral

1. x t h t h t x t( )* ( ) ( )* ( ) ( )= Commutative

2. f t x t y t f t x t f t y t( )*[ ( ) ( )] ( )* ( ) ( )* ( ) ( )+ = + Distributive

3. f t x t y t f t x t y t( )*[( ( )* ( )] [( )* ( )]* ( ) (Associative)=

4. f t t f t d f t( )* ( ) ( ) ( ) ( )d t d t t= - =
-¥

¥

ò
5.   f(t)* δ(t−to) = f(t−to)

6. f t t f t d f t( )* ( ) ( ) ( ) ( )¢ = ¢ - = ¢
-¥

¥

òd t d t t

7. f t u t f u t d f d

t

( )* ( ) ( ) ( ) ( )= - =
-¥-¥

¥

òò t t t t t

8. u t t u t d u t t( )* ( ) ( ) ( ) ( ) ( )¢ = ¢ - = ¢ =
-¥

¥

òd t d t t d

9. If x1(t)* x2(t) = y(t), then

  x1(t + t1)* x2(t + t2) = y(t + t1 + t2)

x(t)

* =

h(t) x(t)*h(t)

T1

t
T2

t
T1 + T2

t

FIGURE 2.2  The width property of convolution.
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The convolution integral can be evaluated in three different ways:

	 1.	Analytical method, which involves performing the integration by hand 
when x(t) and h(t) are specified analytically.

	 2.	Graphical method, which is appropriate when x(t) and h(t) are provided in 
graphical form.

	 3.	Numerical method, where we approximate x(t) and h(t) by numerical 
sequence and obtain y(t) by discrete convolution using a digital computer.

We will apply the analytical method right away and apply graphical and numerical 
methods later. Table 2.2 shows some common signals and their convolution.

Example 2.1

Obtain the convolution of these two signals:

	 x t e t( ) = - 2
  and  y t t( ) = 2 2   for all t.

Solution

Let z(t) = x(t)*y(t). We first get x e( )t t= - 2  and y(t−τ) = 2(t−τ)2. Applying Equation 2.6, 

we obtain

	

z t x y t d e t d

e t t

( ) ( ) ( ) [ ( ) ]

[

= - = -

= - +

-¥

¥

-

-¥

¥

-

ò òt t t t t

t t

t

t

2

2

2

2 4 2

2

2 2]]d

t e d t e d e d

t

t t t t tt t t

-¥

¥

-

-¥

¥

-

-¥

¥

-

-¥

¥

ò

ò ò ò= - +2 4 22 22 2 2

	

(2.1.1)

TABLE 2.2
Abbreviated Convolution Table

No. x1(t) x2(t) x1(t)* x2(t) 

1. x(t) δ(t) x(t)

2. u(t) u(t) tu(t) = r(t)

3. eat u(t) u(t)
e

a
u t

at -1
( )

4. e−at u(t) e−bt u(t)
1

a b
e e u tbt at

-
-éë ùû

- - ( )

5. eat u(t) ebt u(t)
1

b a
e e u tbt at

-
-éë ùû ( )

6. eat u(t) eat u(t) teat u(t)

7. teat u(t) eat u(t)
1
2

2t e u tat ( )



69Convolution

The first integral on the left side is given by

	

e d-

-¥

¥

=ò t t p
2 	 (2.1.2)

The second integral is zero because the integrand is an odd function of τ. The 
third function

	

t t t t
pt t2 2

0

2 2
2

2
e d e d- -

¥

-¥

¥

= =òò 	 (2.1.3)

substituting Equations 2.1.2 and 2.1.3 into Equation 2.1.1 gives

	

z t t

t t

( )

. . ,

= - +

= +

2 0

3 545 1 772

2

2

p p

for all

Practice Problem 2.1  Determine the convolution of f t e t( ) = -2 2
 and g(t) = t.

Answer: 0.4431t.

Example 2.2

The input x(t) and the impulse response h(t) of an LTI system are given by x(t) = u(t) 
and h(t) = e−3tu(t). Find the output response.

Solution

From Equation 2.6,

	

y t x h t d u e u t dt( ) ( ) ( ) ( ) ( )( )= - = -
-¥

¥

- -

-¥

¥

ò òt t t t t tt3 	 (2.2.1)

In this integral, t is a constant so that we can pull out the factor e−3t.

By definition,
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u t
t

t

t

t
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( )
,

,

,

,

t
t
t

t
t
t

t
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>
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- >
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ì
í
î

=
<
>

ì
í
î

1 0

0 0

1 0

0

1

0< 0

Thus,

	
u u t

t
( ) ( )

,

,
t t

t
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< <ì
í
î

1 0

0 otherwise



70 Signals and Systems: A Primer with MATLAB®

The limits on the integral now becomes 0 < τ < t. Therefore, Equation 2.2.1 
becomes

	

y t e e d
e

e
t

e t

t

t t

t

( )

( ),

= =

= - >

-
-

-

ò3 3

0

3
3

3

3 0

1
3

1 0

t tt

or

	
y t e u tt( ) ( ) ( )= - -1

3
1 3

Practice Problem 2.2  Consider a system in which the input x(t) = r(t) = tu(t) and 
the impulse response h(t) = u(t). Determine the output y(t).

Answer: y(t) = 0.5t2u(t).

2.4  GRAPHICAL CONVOLUTION

We now consider graphical method of evaluating the convolution integral. This 
method usually involves four steps:

	 1.	Folding: Take the mirror image of h(τ) about the ordinate (or vertical) axis 
to obtain h(−τ)

	 2.	Shifting: Displace or shift h(−τ) by t to obtain h(t − τ)
	 3.	Multiplication: Multiply h(t − τ) and x(τ) together
	 4.	 Integration: For a given t, integrate the product h(t − τ)x(τ) over 0 <τ < t to 

get y(t) at t

The folding operation in step 1 is the reason for the term convolution. The function 
h(t − τ) scans or slides over x(τ).

To apply this procedure, we must be able to sketch h(t − τ). Sketching h(t − τ) is 
the key to the convolution process. It involves reflecting h(τ) about the vertical axis 
and shifting by t. This is illustrated in Figure 2.3. Analytically, we obtain h(t − τ) by 
replacing every t in h(t) by t − τ. Since convolution is commutative, it may be more 
convenient to apply steps 1 and 2 to x(t) instead of h(t).

Example 2.3

Obtain the convolution of the two signals in Figure 2.4.

Solution

Let y(t) = x(t)*h(t), where x(t) is a unit step and

	
h t

t t

t
( )

,

,
=

+ - < <
< <

ì
í
î

2 2 0

1 0 2
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In this case, it is easy to fold x(t), the unit step function. Let

	
y t x t h t x t h d( ) ( ) * ( ) ( ) ( )= = -ò t t t

We follow the four steps to get y(t). First, we fold x(t) as shown in Figure 2.5a and 
shift it by t as shown in Figure 2.5b.

For t < −2, there is no overlap of the two signals, as shown in Figure 2.6a. 
Hence,

	 y t x t h t t( ) ( ) * ( ) ,= = < -0 2 	 (2.3.1)

h(–τ)

τ–a o–b
(b)

h(τ)

τ0 a
(a)

b τ0
(c)
–b t–b t–a

t

h(t–τ)

  

FIGURE 2.3  Folding and sliding the function h(t).

x(t) h(t)

0 t t20

2

1

–2

FIGURE 2.4  For Example 2.3.

x(–τ) x(t–τ)

1

(a) (b)
0 τ 0

1

τt

FIGURE 2.5  For Example 2.3: (a) Folding x(t) and (b) shifting x(−τ) by t.
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For −2 < t < 0, the two signals overlap between −2 and t, as shown in Figure 2.6b.

	

y t h x t d d
t t

t t

t

( ) ( ) ( ) ( ) ( )

. ,

= - = +
-

= +
-

= + + -

-
ò t t t t t t
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2

2

2

2 1
2

2
2 2

0 5 2 2 22 0< <t

	

(2.3.2)

For 0 < t < 2, the two signals overlap between −2 and t, as shown in Figure 2.6c.

	

y t d d
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t

t tt t t= + < <2 1 0 2( ),

	

(2.3.3)

For t > 2, the two signals overlap between −2 and 2, as shown in Figure 2.6d.

	

y t d d( ) ( )( ) ( )( )= + +

= +
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è
ç

ö

ø
÷ -
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2
2

0

2
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2
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2
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t t t

t
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t == >6 2, t
	

(2.3.4)

x(t–τ)

h(τ)
2

t
(a)

–2 0 2 τ

x(t–τ)

h(τ)
2

(b)
t t–2 0 2 τ

x(t–τ)
h(τ)

t
(c)

–2 0

2

t 2 τ

h(τ)

x(t–τ)

(d)
τt –2 0 2 t

FIGURE 2.6  For Example 2.3: Overlapping of x(t − τ) and h(τ) for (a) t <−2, (b) −2 < t < 0, 
(c) 0 < t < 2, and (d) t > 2.
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Combining the results in Equations 2.3.1 through 2.3.4, we obtain

	

y t

t t t

t t

t
( )

. ,

( ),

,

,

=

+ + - £ £
+ £ £

>

ì

í
ï
ï

î
ï
ï

0 5 2 2 2 0

2 1 0 2

6 2

0

2

otherwise

	 (2.3.5)

which is sketched in Figure 2.7. Notice that y(t) in this equation is continuous; that 
is, it has no discontinuities. This fact can be used to check the results as we move 
from one range of t to another.

Practice Problem 2.3  Find the convolution of the two signals in Figure 2.8.

Answer: z t x t y t

t t

t t

t t t

( ) ( ) * ( )

,

( ),

,

,

= =

£ £

- < <

+ -( ) £ £

1
2

0 1

1
2

2 1 1 2

1
2

3 2 2 3

0

2

2

ootherwise

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

y(t)

6

4

2

–2 –1 0 1 2 3 4 t

FIGURE 2.7  For Example 2.3: Convolution of signals x(t) and h(t).

x(t) y(t)

1 1

0 1 2 t

2

0 1 t

FIGURE 2.8  For Practice Problem 2.3.
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Example 2.4

Given x1(t) and x2(t) in Figure 2.9, find y(t) = x1(t)* x2(t).

Solution

We fold x1(t) so that

	
y t x t x t x t x d( ) ( ) * ( ) ( ) ( )= = -ò1 2 1 2t t t

For t < −1, there is no overlapping, as shown in Figure 2.10a. Hence, y(t) = 0.

For −1 < t < 0, there is overlapping between −1 and t, as in Figure 2.10b,

	

y t t d
t t t

t
t

( ) ( ) ( )
( ) ( )

,= - =
-
- -

=
+

- < <
-
ò t t

t2

1

3 3

1
3 1

1
3

1 0

x2(τ)

τ

(t–τ)2

t
(a)

–1 0 1

1 x2(τ)

(t–τ)2

(b)
τt–1 0 1

1

x2(τ)

(t–τ)2

(c)
τt t–1 –10 1

1 x2(τ)

(t–τ)2

(d)
τt t t–1 0 –11

1

FIGURE 2.10  For Example 2.4: (a) t <−1, (b) −1 < t < 0, (c) 0 < t < 1, and (d) t > 1.

0 1

1

1

–1 0 1 t

x1(t) x2(t)

t

t2

FIGURE 2.9  For Example 2.4.
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For 0 < t < 1, the two signals overlap between t − 1 and t, as shown in Figure 2.10c.

	

y t t d
t t

t
t

t

t

( ) ( ) ( )
( )

,= - =
-
- -

= < <
-
ò t t

t2

1

3

1
3 1

1
3

0 1

For 1 < t < 2, they overlap between t − 1 and 1, as depicted in Figure 2.10d.

	

y t t d
t

t
t t

t

t

( ) ( ) ( )
( )

( ) ,= - =
-
- -

= - - < <
-
ò t t

t2

1

3
31

3

1

1
1
3

1
3

1 1 2

For t > 2, there is no overlapping so that y(t) = 0. Thus,

	

y t

t t

t

t t

( )

( ) ,

,

( ) ,

,

=

+ - < <

< <

- - < <

ì

í

1
3

1 1 0

1
3

0 1

1
3

1
3

1 1 2

0

3

3

otherwise

ïï
ï
ïï

î

ï
ï
ï
ï

Practice Problem 2.4  Graphically convolve x(t) and y(t) shown in Figure 2.11.

Answer: z t x t y t

t t

t t( ) ( ) * ( )

( cos ),

(cos ),

,

= =

- < <

- < <

1
1 0 1

1
1 1 2

0

p
p

p
p

otherwisse

ì

í

ï
ï
ï

î

ï
ï
ï

x(t) y(t)

1
1

sinπt

0 1 0 1t t

FIGURE 2.11  For Practice Problem 2.4.
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2.5  BLOCK DIAGRAM REPRESENTATION

The commutative, associative, and distributive properties of the convolution integral, 
listed in Table 2.1, can be illustrated in the block diagrams shown in Figure 2.12. 
Notice that the commutative property, illustrated in Figure 2.12a, shows that x(t) and 
h(t) are interchangeable. The associative property, illustrated in Figure 2.12b, states 
that a series or cascaded arrangement of LTI systems can be replaced by a single 
system using convolution. The distributive property, illustrated in Figure 2.12c, 
indicates that a parallel arrangement of LTI systems can be combined into a single 
system through addition.

Example 2.5

Find the impulse response of the system shown in Figure 2.13. Let

	

h t t

h t e u t

h t e u t

h t e u t

t

t

t

1

2

3
2

4
3

3

2

4

( ) ( )

( ) ( )

( ) ( )

( ) ( )

=

=

=

=

-

-

-

d

Solution

Comparing Figure 2.13 with Figure 2.12, we notice that

	 h t h t h t h t h t( ) ( ) * ( ) ( ) * ( )= +1 2 3 4 	 (2.5.1)

(c)

x(t) x(t)

h1(t)

h2(t)

h1(t) + h2(t)
y(t)

+ y(t)

(b)

x(t) x(t)
h1(t) h2(t) h1(t)*h2(t)

y(t)
y(t)

x(t)

(a)

x(t)h(t) y(t) y(t)h(t)

FIGURE 2.12  Block diagrams illustrating properties of convolution.
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Using the fact that x(t)*δ(t) = x(t), we obtain the first convolution on the right-hand 
side as

	
h t h t t e u t e u tt t

1 2 3 2 6( ) * ( ) ( ) * ( ) ( )= { } =- -d 	 (2.5.2)

For the second convolution,

	

h t h t e u e u t dt
3 4

2 34( ) * ( ) ( ) ( )( )= -- - -

-¥

¥

ò t tt t t

but

	
u u t

t
( ) ( )

,

,
t t

t
- =

< <ì
í
î

1 0

0 otherwise

Therefore,

	

h t h t e e d e e d

e e
t

t

t

t

t

t

3 4
2 3

0

3 3 2

0

3

4 4

4
0

( ) * ( ) ( ) ( )= =

=

- - - - -

-

ò òt t t

t

t t

== - >

= -

- -

- -

4 0

4

2 3

2 3

( ) ,

( ) ( )

e e t

e e u t

t t

t t

	

(2.5.3)

Substituting Equations 2.5.2 and 2.5.3 into Equation 2.5.1 gives

	 h t e u t e e u tt t t( ) ( ) ( ) ( )= + -- - -6 4 2 3

Practice Problem 2.5  For the system shown in Figure 2.14,

	

h t e u t

h t e u t

t

t

1

2
2

2

4

( ) ( )

( ) ( )

=

=

-

-

Determine the overall impulse response h(t).

Answer: h(t) = 8(e−t−e−2t)u(t).

x(t) y(t)+

h3 h4

h1 h2

FIGURE 2.13  For Example 2.5.
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2.6  DISCRETE-TIME CONVOLUTION

When an input is applied to a discrete-time system, the response or output sequence 
can be determined in a way similar to using the impulse response and the convolu-
tion integral for continuous-time systems. To refresh our mind, we will redefine the 
unit step sequence u[n] as

	
u n

n

n
[ ]

,

,
=

<
³

ì
í
î

0 0

1 0
	 (2.16)

The unit impulse sequence is also redefined as

	
d[ ]

,

,
n

n

n
=

¹
=

ì
í
î

0 0

1 0
	 (2.17)

The signal only has value at n = 0. The displaced delta function is

	
d[ ]

,

,
n k

n k

n k
- =

¹
=

ì
í
î

0

1
	 (2.18)

We said in Chapter 1 that an alternative way of expressing any discrete signal x[n] is

	

x n x k n k
k

[ ] [ ] [ ]= -
=-¥

¥

å d 	 (2.19)

that is, we can represent x[n] as a weighted sum of delayed impulses. The multiplica-
tion property of the impulse function is

	
d d[ ] [ ] [ ] [ ]n x n k x k n- = - 	 (2.20)

	 d d[ ] [ ] [ ] [ ]n k x n x k n k- = - 	 (2.21)

The impulse response h[n] of a discrete-time LTI system is the response of the sys-
tem when the input is δ[t], that is,

	 h n t[ ] { [ ]}= T d 	 (2.22)

This is illustrated in Figure 2.15.

x(t) h1 h2 y(t)

FIGURE 2.14  For Practice Problem 2.5.
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The convolution of the discrete input signal x[n] and the impulse response h[n] is

	 y n x n h n[ ] [ ]* [ ]= 	 (2.23)

and is defined as

	

y n x k h n k
k

[ ] [ ] [ ]= -
=-¥

¥

å 	 (2.24)

Thus,

	

y n x n h n x k h n k
k

[ ] [ ]* [ ] [ ] [ ]= = -
=-¥

¥

å 	 (2.25)

This is known as the convolution sum or superposition sum for the system response. 
Notice that as in continuous-time convolution, one of the signals is time-inverted, 
shifted, and then multiplied by the other. By the change of variables m = n − k or 
k = n − m, we have

	

y n h m x n m h n x n
m

[ ] [ ] [ ] [ ]* [ ]= - =
=-¥

¥

å 	 (2.26)

This shows that the order of summation is immaterial; that is, discrete convolution 
is commutative. This and other properties of the convolution operation are listed in 
Table 2.3. It is evident from the convolution sum in Equation 2.23 that if we know 
h[n], we can find the system response y[n] to any input x[n] (Figure 2.15).

TABLE 2.3
Properties of the Convolution Sum

1. x n h n h n x n[ ]* [ ] [ ]* [ ] (Commutative)=

2. f n x n y n f n x n f n y n[ ]* [ ] [ ] [ ]* [ ] [ ]* [ ] ( )+[ ] = + Distributive

3. f n x n y n f n x n y n[ ]* [ ]* [ ] [ ]* [ ] * [ ] (Associative)[ ] = [ ]
4. x n m h n k y n m k[ ]* [ ] [ ] (Shifting)- - = - -
5.  x[n]* δ[n] = x[n]

δ[n] h[n]
System

T

FIGURE 2.15  Block diagram illustrating impulse response.
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If both x[n] and h[n] are causal, that is, x[n] and h[n] are zero for all integers n < 0, 
the summation in Equation 2.25 becomes

	

y n h k x n k n
k

n

[ ] [ ] [ ],= - ³
=

å
0

0 	 (2.27)

where y[n] = 0 for n < 0.
The convolution of an M-point sequence with an N-point sequence produces an 

(M + N − 1)-point sequence.

Just as the continuous-time convolution involves some steps, evaluating the convolu-
tion sum requires the following steps:

	 1.	 The signal h[k] is time-reversed to get h[−k] and then shifted by n to form h[n − k] 
or h[−(k − n)], which should be regarded as a function of k with parameter n.

	 2.	For a fixed value of n, multiply x[k] and h[n − k] for all values of k.
	 3.	The product x[k]h[n − k] is summed over all k to produce a single value of y[n].
	 4.	Repeat steps 1–3 for various values of n to produce the entire output y[n].

Table 2.4 presents a list from which convolution sums can be determined directly for 
a variety of signal pairs.

Example 2.6

Let r[n] be the convolution of two unit step sequences, that is,

	 r n u n u n[ ] [ ]* [ ]=

TABLE 2.4
Abbreviated Table for Convolution Sums

No. x1[n] x2[n] x1[n]* x2[n] 

1. x[n] δ[n − k] x[n − k]

2. u[n] u[n] (n + 1)u[n] = r[n]

3. anu[n] u[n]
1

1

1-
-

é

ë
ê

ù

û
ú

+a

a
u n

n

[ ]

4. anu[n] bnu[n]
a b

a b
u n

n n+ +-
-

é

ë
ê

ù

û
ú

1 1

[ ]

5. u[n] nu[n] ½ (n)(n + 2)u[u]

6. nu[n] nu[n]
1
6

1 1n n n u n( )( )+ - [ ]

7. anu[n] nu[n]
a a n a

a
u n

n( ) ( )

( )
[ ]

- + -
-

é

ë
ê

ù

û
ú

1 1

1 2

8. anu[n] anu[n] (n + 1)anu[n]
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Find r[n].

Solution

	
r n u n u n u k u n k

k

[ ] [ ]* [ ] [ [ ]= = -
=¥

¥

å ]

The functions u[k], u[−k], and u[n − k] are shown in Figure 2.16. The convolution 
takes place when we multiply the sequences in Figure 2.16a with Figure 2.16c 
and d. It is good to show u[n − k] for n < 0 and for n > 0 as in Figure 2.16c and d, 
respectively. For n < 0, the nonzero values of u[k] and u[n − k] do not overlap 
so that u[k]u[n − k] = 0 for all values of k. This implies that r[n] = 0 for n < 0. For 
n ≥ 0, the nonzero values of u[k] and u[n − k] overlap. This overlap begins with 
u[k] at k = 0 and ends with u[n − k] at k = n. Hence,

	
r n u k u n k n

k

n

k

n

[ ] [ ] [ ] ( )= - = = +
= =

å å
0 0

1 1

Therefore,

	 r n n u n[ ] ( ) [ ]= +1

This is the unit ramp sequence and is shown in Figure 2.16e.

u(k)

1

0
(a)

k

u(–k)

1

(b)
0 k

r[n]

(e)

1
2 3 4

5
6

0 n

u(–k)

(d)
0

1

n k

(for n> 0)

u(n–k)

1

0
(c)

n k

(for n< 0)

FIGURE 2.16  For Example 2.6.
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Practice Problem 2.6  Let the input x[n] and impulse response of a system be 
given by

	 x n u n h n a u n an[ ] [ ], [ ] [ ],= = < <0 1

find the output y[n] = x[n]* h[n].

Answer: y n
a
a

u n
n

[ ] [ ]=
-

-

+1
1

1

Example 2.7

Consider x[n] and h[n] as shown in Figure 2.17. (The signals are all zero outside the 
ranges indicated.) Find y[n] = x[n]*h[n]:
	 (a)	 Analytically and (b) graphically.

Solution

	 (a)	 Using Equation 2.19, we can write

	

x n n n n

h n n n n

y n x n

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ]*

= - + - + -

= + - + -

=

d d d

d d d

1 2 3

1 2

hh n x n n n n

x n x n x n

n

[ ] [ ]* { [ ] [ ] [ ]}

[ ] [ ] [ ]

[ ]

= + - + -

= + - + -

= - +

d d d

d

1 1

1 2

1 dd d

d d d

d d d

d

[ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

n n

n n n

n n n

- + -

+ - + - + -

+ - + - + -

=

2 3

2 3 4

3 4 5

[[ ] [ ] [ ] [ ] [ ]n n n n n- + - + - + - + -1 2 2 3 3 2 4 5d d d d

	 This is illustrated in Figure 2.18.
	 (b)	 The graphical convolution is shown in Figure 2.19. We do the convolution 

for n = 0, 1, 2, 3, and 4. Looking at the trend, we can similarly conclude that 
for n = 5, y =1, and for n > 5, y = 0. Thus, y[n] is as shown in Figure 2.18, 
that is,

	 y n[ ] , , , ,= [ ]1  2  3  2  1

x[n]

1

0 01 12 23 n n

1

h[n]

FIGURE 2.17  For Example 2.7.
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y[n]
3

2
1

0 1 2 3 4 5 n

1
2

FIGURE 2.18  For Example 2.7; y[n] = x[n]*h[n].

h[n–k]

h[n–k]

h[n–k]

h[n–k]

h[n–k]

h[n–k]

x[k]h[n–k]

x[k]h[n–k]

x[k]h[n–k]

x[k]h[n–k]

x[k]h[n–k]

x[k]

1 1

1

1 1

1

–4 –2

–2–1

–1

0

0 1

1

k

–1 0

0 1 2 3 0 1 2 3

0 1
1

1

11

1

2 31 k

k

k

k

0 1 2 3 4 0 1 2 3k k

0 1
k

0 0 1 2 3k

k k

n < 0
y = 0

n < 0
y = 0

n = 1
y = 1

n = 2
y = 1 + 1 = 2

n = 3
y = 1 + 1 + 1 = 3

n = 4
y = 1 + 1 = 2

k

FIGURE 2.19  For Example 2.7(b); graphical convolution.
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Practice Problem 2.7  Find the convolution of the discrete signals shown in 
Figure 2.20. The signals are all zero outside the range indicated.

Answer: See Figure 2.21.

Example 2.8

Consider a discrete-time LTI system for which the input and impulse functions are 
given by

	 x n u n h n u nn n[ ] ( . ) [ ], [ ] ( . ) [ ]= =0 7 0 2

Find the response y[n].

Solution

	
y n x n h n x k h n k

k

[ ] [ ]* [ ] [ ] [ ]= = -
=-¥

¥

å

But x[k] = (0.7)ku[k] and h[n − k]= (0.2)n − k u[n − k]
Because x[n] and h[n] are causal, we can use Equation 2.27.

	

y n x n h n nk n k

k

n

n

[ ] [ ]* [ ] ( . ) ( . ) , , , ,

( . )
.
.

= = =

= æ

-

=
å 0 7 0 2 0 1 2

0 2
0 7
0 2

0

…

èè
ç

ö
ø
÷

=
å

k

k

n

0

x[n] h[n]

0 0

3
2

11

1 2 n1 n

FIGURE 2.20  For Practice Problem 2.7.

y[n]

3

5

3
1

n0 1 2 3

FIGURE 2.21  Solution for Practice Problem 2.7.
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This is a geometric series. We notice from Appendix A,

	

a
b

a b
a b

k n

k

n
æ
è
ç

ö
ø
÷ =

-
- ( )

-

=
å 1

1

1

0

( )/
/

Taking a = 0.7 and b = 0.2

	
y n n

n
n n[ ] .

( . . )
. .

( . ) ( . )=
-

-
= - -éë ùû

+
+ +0 2

1 0 7 0 2
1 0 7 0 2

2 0 2 0 7
1

1 1/
/

Therefore,

	
y n u nn n[ ] ( . ) ( . ) [ ]= -éë ùû

+ +2 0 7 0 21 1

Practice Problem 2.8  Suppose for a discrete-time LTI system, the input x[n] and 
the impulse response h[n] are

	 x n u n h n u nn[ ] [ ] [ ] [ ]= =4  and 

Find the output signal y[n].

Answer: y n
n

n

n

[ ]
,

,
=

<

³

ì
í
ï

îï

+4 0

4
3

0

1

2.7  BLOCK DIAGRAM REALIZATION

Just as with continuous-time case, we can find the impulse response of systems 
connected in series (cascade) or in parallel. Figure 2.22a illustrates the commuta-
tive property, that is, x[n] and h[n] are interchangeable. The associative property, 
illustrated in Figure 2.22b, shows that when two systems (with impulse responses 
h1[n] and h2[n]) are connected in series, the overall impulse response is h1[n]*h2[n]. 
The distributive property, illustrated in Figure 2.22c, shows that when two sys-
tems are connected in parallel, the impulse response of the composite system is 
h1[n] + h2[n].

2.8  DECONVOLUTION

We know that if the impulse response h[n] of a system is known, we can find the 
response y[n] to an input x[n] as simply the convolution of x[n] and h[n]. If we know 
x[n] and y[n], how do we get h[n]? The process of getting h[n], given x[n] and y[n], 
is known as deconvolution. The process is also known as inverse filtering or system 
identification.
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Deconvolution is the process of obtaining one of the constituent signals in the 
convolution sum.

Deconvolution is often encountered in practice when trying to measure the 
response of the communication channel. It has no direct mathematical definition in 
the continuous-time domain. Discrete convolution can be done in two ways: poly-
nomial division and recursive algorithm. Both methods will be shown in the fol-
lowing example. We will also use a MATLAB command for performing discrete 
deconvolution.

Example 2.9

Let x[n] = {3, 0, 2, 6} and y[n] = {6, 10, 25, 20, 38, 42}. Find h[n].

Solution

We will obtain the corresponding h[n] in two ways.

Method 1 (Long division):
We regard the given sequences x[n] and y[n] as coefficients of the following poly-
nomials in descending order.

	 x z z z z y z z z z z z( ) , ( )= + + + = + + + + +3 0 2 6 6 12 25 20 38 423 2 5 4 3 2

x[n]

x[n]

x[n]

x[n]

x[n]

y[n]

+
y[n]

h[n]

h1[n]

h1[n]

h2[n]

h2[n]

h1[n]*h2[n]

h1(t) + h2(t)

y[n] y[n]

y[n]

y[n]

h[n] x[n] s

(a)

(b)

(c)

FIGURE 2.22  Block diagrams illustrating interconnected systems.
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We now perform a long division y(z)/x(z).

	

3 0 2 6 6 12 25 20 38 42

6 0 4 12

12

3 2 5 4 3 2

5 4 3 2

4

z z z z z z z z

z z z z

z

+ + + + + + + +

+ + +

++ + + +

+ + +

+ + +

+ +

21 8 38 42

12 0 8 24

21 0 14 42

21 0 1

3 2

4 3 2

3 2

3 2

z z z

z z z z

z z z

z z

)

44 42

0

2 4 72

z

z z

+

+ +

From this, we obtain the polynomial h(z) = 2z2 + 4z + 7 or h[n] = {2, 4, 7}.

Method 2 (recursive algorithm):
By definition,

	
y n x n h n h k x n k

k

n

[ ] [ ]* [ ] [ ] [ ]= = -
=

å
0

	 (2.9.1)

This convolution sum can be cast as a recursive algorithm. For n = 0,

	 y x h h y x[ ] [ ] [ ] [ ] [ ] / [ ] /0 0 0 0 0 0 6 3 2= ® = = = 	 (2.9.2)

We separate the term containing x[0] in Equation 2.9.1.

	
y n h n x h k x n k

k

n

[ ] [ ] [ ] [ ] [ ]= + -
=

-

å0
0

1

	 (2.9.3)

From this, we obtain for n > 0,

	

h n
x

y n h k x n k
k

n

[ ]
[ ]

[ ] [ ] [ ]= - -
é

ë
ê
ê

ù

û
ú
ú=

-

å1
0

0

1

	 (2.9.4)

We will need to evaluate this at Ny−Nx + 1 points, where Ny and Nx are the lengths 
of y[n] and x[n], respectively. In this example,

	 N N N Ny x y x= = - + = - + =6 4 1 6 4 1 3,   so that  

that is, we need three evaluations of h[n]. From Equation 2.9.2, we already got 
h[0] = 2. We now apply Equation 2.9.4 twice. For n = 1,

	

h
x

y h k x k
x

y h x
k

[ ]
[ ]

[ ] [ ] [ ]
[ ]

[ ] [ ] [ ]1
1
0

1 1
1
0

1 0 1
0

0

= - -
é

ë
ê
ê

ù

û
ú
ú

= -é
=

å ëë ùû = - ´ =
1
3

12 2 0 4[ ]
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For n = 2,

	

h
x

y h k x k
x

y h x
k

[ ]
[ ]

[ ] [ ] [ ]
[ ]

[ ] [ ] [ ]2
1
0

2 2
1
0

2 0 2
0

1

= - -
é

ë
ê
ê

ù

û
ú
ú

= - -
=

å hh x[ ] [ ]

[ ]

1 1

1
3

25 2 2 4 0 7

éë ùû

= - ´ - ´ =

thus, h = {2, 4, 7} as we obtained previously.

Practice Problem 2.9  Given that x[n] = {1, 8, 4, 5} and y[n] = {4, 38, 66, 61, 46, 
14, 5}, find h[n].

Answer: h[n] = {4, 6, 2, 1}.

2.9  COMPUTING WITH MATLAB®

MATLAB provides a simple way of performing convolution. Given two signals 
x and  h, we can use MATLAB to do the convolution with the built-in function 
conv(x,h). The function conv returns a vector of length Lx + Lh − 1, where Lx is the 
length of x and Lh is the length of h. This produces an output that will be longer than 
the input. Often the additional data can be discarded.

It does not matter when x and h are continuous-time or discrete-time signals. 
We use conv function for both cases. In fact, the function conv is actually designed 
for discrete-time convolution. To use it for continuous-time convolution, we need to 
evaluate the convolution integral numerically. Consider the convolution integral

	

y t x h t d

t

( ) ( ) ( )= -ò t t t
0

	 (2.28)

Let T, the step size or sampling period, be small and let t = kT and τ = nT, the convo-
lution integral becomes a convolution summation which can be expressed as

	

y kT T x nT h k n T T x n h k n
n

kT

n

k

( ) ( ) (( ) ) [ ] [ ]» - = -
= =

å å
0 0

	 (2.29)

This approximates a rectangular rule integration. Equation 2.29 can be written as

	

y k T x n h k n
n

k

( ) [ ] [ ]» -
=

å
0

	 (2.30)

which looks like discrete-time convolution except for multiplying by T.
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For the purpose of illustration, we will solve one example for discrete-time sig-
nals and one example for continuous-time signals.

The MATLAB command deconv(y,h) can be used to find the discrete deconvolu-
tion of y[n] and x[n], producing h[n]. While conv can be used to multiply polynomi-
als, deconv can be used to divide polynomials.

Example 2.10

Use MATLAB to find the convolution of the sequences:

	

x n

x n

1

2

0 2 1 4 2 6 5 1 3 4 8 4

1 0 4 2 3 7 0 8 3 9

[ ] { . , . , . , . , . , . }

[ ] { . , . , . , . , . }

=

=

Solution
The MATLAB to perform the convolution is as follows:

	

x

x

1 2  14  2 6  5 1  3 4  8 4

1  4 2  3 7  8  3

= [ ]
=

0

0 02

. , . , . , . , . , .

. , . , . , . , .99

conv 2

[ ]
=y x x( , )1

The result is

	y =0 000 00 00 00 00 0 00 0 00. . . . . . . .2  2 24  9 22  2136  36 34  49 9  62 8  53 669  19 98  32 7600 00 00. .

Thus,

	

x n x n1 2 0 000 00 00 00 00 0 00[ ]* [ ] . . . . . .= { 2  2 24  9 22  2136  36 34  49 9   

62 8  53 69  19 98  32 76. . . .0 00 00 00 00 }

Practice Problem 2.10  Using MATLAB, find the convolution of these sequences:

	 x1[n] = {2, 5, 4, 3, 5, 1, 0}, x2[n] = {1, 6, 3, 9, 4, 7, 2}

Answer: y[n] = [2 17 40 60 88 110 103 98 58 45 17 2 0]

Example 2.11

A system is represented by its impulse response:

	
h t e et t( ) = -( )- -1

4
2

Find and plot the response when the input is x(t) = cos(t) u(t).
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Solution

To use the function conv for continuous-time convolution, we need to mutilply 
conv with a sampling period or step size, as shown in Equation 2.30. The MATLAB 
code is as follows, while the plot is shown in Figure 2.23.

T = 0.1; % sampling period
t = 0:T:10;
x = cos(t); % calculates x(t)
h = 0.25*(exp(−2*t) − exp(−t)); % calculates h(t)
y = T*conv(x,h); %this contains Lx + Lh − 1
t0 = (0:200)*T
plot(t0,y) % or use this plot(t,y(1:101))
xlabel(‘Time (s)’)
ylabel(‘Response y(t)’)

Practice Problem 2.11  Repeat Example 2.11 when

	
h t e e u t x t e t u tt t t( ) ( ), ( ) sin( ) ( )= -( ) =- - -1

2
4

Answer: See Figure 2.24.

Example 2.12

Repeat Example 2.9 using MATLAB.

Solution

In MATLAB, we enter the following lines:

x = [3 0 2 6]
y = [6 10 25 20 38 42]
h = deconv(y,x)

0.1

0.08

0.06

0.04

0.02

Re
sp

on
se

 y(
t)

0

–0.02

–0.04

–0.06

–0.08
0 2 4 6 8 10

Time (s)
12 14 16 18 20

FIGURE 2.23  For Example 2.11.
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This produces

h = [2 4 7]

Practice Problem 2.12  Repeat Practice Problem 2.9 using MATLAB.

Answer: h = [4 6 2 1]

2.10  APPLICATIONS

There are several applications of the convolution technique developed in this chapter.
Convolution is used in circuit analysis, statistics, probability theory, optics, acous-
tics, digital image processing, and computational fluid dynamics. We will employ 
convolution to determine the stability of systems. We will also consider an applica-
tion in circuit analysis.

2.10.1  BIBO Stability of Continuous-Time Systems

A system is bounded-input bounded-output (BIBO) stable if every bounded-input 
signal produces a bounded-output. We can determine the condition for stability by 
applying the convolution integral. Suppose we are given an LTI system and we apply 
a bounded-input x(t). The boundedness of x(t) can be expressed as |x(t)| < K, where 
K is a constant. The output y(t) can be bounded as follows. By definition,

	

y t x t h t x t h d( ) ( )* ( ) ( ) ( )= = -
-¥

¥

ò t t t

0.08

0.07

0.06

0.05

0.04

Re
sp

on
se

 y(
t)

0.03

0.02

0.01

0

–0.01
0 2 4 6 8 10

Time (s)
12 14 16 18 20

FIGURE 2.24  For Practice Problem 2.11.
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Therefore,

	

y t x t h d x t h d K h d

K

( ) ( ) ( ) | ( ) || ( ) | | ( ) |= - £ - £

=

-¥

¥

-¥

¥

-¥

¥

ò ò òt t t t t t t t

hh d( )t t
-¥

¥

ò
	

(2.31)

This shows that |y(t)| is finite if K h d| ( ) |t t
-¥

¥

ò  is finite. This reduces to | ( ) |h dt t
-¥

¥

ò < ¥ 

since K is finite. For an LTI system, the condition for stability reduces to

	

| ( ) |h dt t < ¥
-¥

¥

ò 	 (2.32)

A continuous-time system is BIBO stable if its impulse response h(t) is abso-
lutely integrable.

Example 2.13

An LTI system has the impulse function h(t) = e−2tu(t). Determine whether the 
system is stable or not.

Solution

Using Equation 2.32,

	

| ( ) |h d e d
e

t t tt
t

= =
-

¥
= < ¥-

-¥

-¥

¥

òò 2
2

0
2 0

1
2

Since h(t) is integrable, we conclude that the system is stable.

Practice Problem 2.13  Repeat Example 2.13 with h(t) = u(t). This is the impulse 
response for a continuous-time integrator.

Answer: Unstable.

2.10.2  BIBO Stability of Discrete-Time Systems

The same analysis applies to discrete-time systems. Suppose we have an LTI system 
and we apply a bounded input x(t), with |x[n]| < K, where K is a constant. We can 
bound the output as follows. We recall that

	

y n x n h n x n k h k
k

[ ] [ ]* [ ] [ ] [ ]= = -
=-¥

¥

å
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Therefore,

	

y n x n k h k x n k h k K h k

K

k k k

[ ] [ ] [ ] | [ ] || [ ] | | [ ] |= - £ - £

=

=-¥

¥

=-¥

¥

=-¥

¥

å å å

|| [ ] |h k
k=-¥

¥

å
	

(2.33)

This shows that |y[n]| is finite if | [ ] |h k
k=-¥

¥

å  is finite. Thus, for stability (|y[n]|<∞)

	

| [ ] |h k
k=-¥

¥

å < ¥ 	 (2.34)

A discrete-time system is BIBO stable if its impulse response h[n] is absolutely 
summable.

Example 2.14

A discrete-time system has an impulse response h n
n

u n[ ] [ ]=
1

. Determine if the 

system is stable.

Solution

From Equation 2.34

	
| [ ]| limh k

n n
k k

N
k

N

=-¥

¥

=

¥

®¥
=

å å å= =
1 1

0 0

which does not converge as N→∞. Thus, h[n] is not absolutely summable and we 
conclude that the system is unstable.

Practice Problem 2.14  A filter is described by h[n] = (−0.6)n. Is the system stable?

Answer: Stable.

2.10.3  Circuit Analysis

We now apply convolution to analyze electric circuits. The following example will 
illustrate the procedure.
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Example 2.15

The pulse vs(t) in Figure 2.25a is applied the RL circuit in Figure 2.25b. Use the 
convolution integral to find the response vo(t).

Solution

This problem requires that we know the impulse response of the circuit. Throughout 
this chapter, we assume that the impulse response h(t) is given. We will learn how 
to find it in the next chapter. For now, let us assume that the impulse response of 
the circuit is

	 h(t) = e−t u(t)

From Figure 2.25a, vs(t) = u(t) − u(t − 4). Once we know impulse response h(t) and 
input signal vs(t), we can find the response vo(t):

	

v t h t v t v h t d

u u e d

o s s

t

t

t

( ) ( ) * ( ) ( ) ( )

( ) [ ] ( )

= = -

= - -[ ]

ò

ò - -

t t t

t t t

0

0

4 tt

	

(2.15.1)

Since u(τ − 4) = 0 for 0 < τ < 4, the integrand involving u(τ) is nonzero for all τ, 
whereas the integrant involving u(τ − 4) is nonzero only for τ > 4. The best way to 
handle the integral is to evaluate  the two parts separately. For 0 < t < 4,

	

¢ = =

= - = - < <

- - -

- -

òòv e d e e d

e e e t

o
t t

tt

t t t

( ) ( )

( ) ,

( )1 1

1 1 0 4

00

t tt t
	

(2.15.2)

vs (t)

vs vo1 Ω1

0 2
(a) (b)
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+
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–
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1 H
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FIGURE 2.25  For Example 2.15.
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For t > 4,

	

¢¢ = =
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(2.15.3)

Substituting Equations 2.15.2 and 2.15.3 into Equation 2.15.1 gives

	

v t v t v t

e u t u t e e u t

o o o

t t
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(2.15.4)

Practice Problem 2.15  Find the response vo(t) of the RC circuit of Figure 2.26. 
Assume that the impulse response of the circuit is h(t) = e−tu(t).

Answer: 5 (e−t − e−2t)u(t) V

2.11  SUMMARY

	 1.	This chapter discusses time-domain analyses of linear, time-invariant (LTI) 
continuous-time and discrete-time systems.

	 2.	Every LTI system is characterized by its impulse response h(t) or h[n].
	 3.	The analysis of an LTI system can be reduced to finding the response of the 

system to input signals. Given the impulse response h(t), the system’s response 
y(t) to an input signal x(t) is given by the convolution integral:

	

y t x t h t x h t d( ) ( )* ( ) ( ) ( )= = -
-¥

¥

ò t t t

		  Thus, convolution is a time-domain technique for determining the response of 
a system to an input.

	 4.	Convolution is obtained analytically or graphically by performing four 
operations: (1) folding or time reversal to get h(−τ), (2) shifting to get h(t − τ), 
(3) multiplying h(t − τ) and x(τ), and (4) integrating h(t − τ)x(τ).

1 Ω

vovs
1 F

+

+
–

–

FIGURE 2.26  For Practice Problem 2.15.
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	 5.	The composite impulse response h(t) of two systems (with impulses 
h1(t) and h2(t)) in series is the convolution of the individual impulses, that is, 
h(t) = h1(t)*h2(t).

	 6.	The composite impulse response h(t) of two systems (with impulses h1(t) and h2(t)) 
in parallel is the sum of the individual impulses, that is, h(t) = h1(t) + h2(t).

	 7.	Block diagram representation helps us understand the dynamic behavior of 
systems.

	 8.	For discrete-time system, the impulse response h[n], the input x[n], and the 
output y[n] are related by the convolution sum:

	

y n x n h n x k h n k
k

[ ] [ ]* [ ] [ ] [ ]= = -
=-¥

¥

å
	 9.	Convolution (both in continuous-time and discrete-time) is commutative, asso-

ciative, and distributive.
	 10.	Deconvolution is the process of finding the impulse response h[n] of a system 

given its input x[n] and its output y[n].
	 11.	The function conv(x,h) is used in MATLAB to perform both continuous-time 

and discrete-time convolution. The MATLAB function deconv(y,x) performs 
discrete deconvolution.

	 12.	A continuous-time system is BIBO stable if its impulse response is absolutely 
integrable. A discrete-time system is BIBO stable if its impulse response is 
absolutely summable.

	 13.	A simple application of convolution is circuit analysis. If we know the impulse 
response of a circuit, we can determine the response to any input with the use 
of convolution.

REVIEW QUESTIONS

	 2.1	 It is improper to talk about an impulse response for a non-LTI system.
	 (a)	 True, (b) false
	 2.2	 Which of these is not true?
	 (a)	 x(t)*h(t) = h(−t)*x(t)
	 (b)	x(t)*δ(t) = x(t)
	 (c)	 x(t)*δ′(t) = x′(t)
	 (d)	u(t)*δ′(t) = δ(t)
	 2.3	� The methods introduced in this chapter are known as time-domain method 

because they involve functions of time.
	 (a)	 True, (b) false
	 2.4	� When two systems with impulse responses h1(t) and h2(t) are connected in 

series, the impulse response of the composite system is
	 (a)	 h1(t) + h2(t), (b) h1(t)*h2(t), (c) h1(t)/h2(t), (d) none of the above
	 2.5	� Consider the two signals in Figure 2.27. They are convolved to get y(t). The 

duration of y(t) is
	 (a)	 −1 < t < 2, (b) −2 < t < 2, (c) −1 < t < 3, (d) none of the above
	 2.6	 From the previous question, the area of y(t) is
	 (a)	 2, (b) 4, (c) 6, (d) none of the above
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2.7	 Which of the following is not true?
	 (a)	 δ[n] = u[n]−u[n−1]

	 (b)	 u n k
k

n

[ ] [ ]=
=-¥
åd

	 (c)	 x[n]* δ[n] = x[n]
	 (d)	x[n]* h[n] = −h[n]* x[n]
2.8	� If two sequences of length 8 and 10 are convolved to give y[n], the length of y[n] is
	 (a)	 8, (b) 10, (c) 17, (d) 18, (e) none of the above
2.9	 �Consider the interconnection of three LTI system in Figure 2.28. The overall 

impulse response is
	 (a)	 h1[n] + h2[n] + h3[n]
	 (b)	h1[n]* h2[n]* h3[n]
	 (c)	 None of the above
2.10	 The MATLAB function conv is used for
	 (a)	 Continuous-time convolution
	 (b)	Discrete-time convolution
	 (c)	 Both (a) and (b)

Answers: 2.1(a), 2.2(a), 2.3(a), 2.4(b), 2.5(c), 2.6(a), 2.7(d), 2.8(c), 2.9(b), 2.10(c)

PROBLEMS

Section 2.3—Convolution Integral

	 2.1	 Show that x1(t)* x2(t) = x2(t)* x1(t).
	 2.2	 Show that
	 (a)	 f(t)*δ(t) = f(t)
	 (b)	f(t)*δ(t − to) = f(t − to)

	 (c)	 f t u t f d

t

( )* ( ) ( )=
-¥
ò t t

x1 (t)

1

–1 0 1 0 2t t

1

x2 (t)

FIGURE 2.27  For Review Questions 2.5 and 2.6.

x[n] y[n]
h1[n] h2[n] h3[n]

FIGURE 2.28  For Review Question 2.9.
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	 2.3	 Show x t
d

dt
t

d

dt
x t( )* ( ) ( )d = .

	 2.4	 Given the following signals

	 x t t y t u t z t e u tt( ) ( ), ( ) ( ), ( ) ( ),= = = -2 4 2d

		  Evaluate the following operations.
	 (a)	 x(t)*y(t)
	 (b)	x(t)*z(t)
	 (c)	 y(t)*z(t)
	 (d)	y(t)*[y(t) + z(t)]
	 2.5	 Use the convolution integral to find
	 (a)	 t*eat u(t)
	 (b)	cos(t)*cos(t)u(t)
	 2.6	 Write the expression for y(t) = x(t)*δ(t − 2) when
	 (a)	 x(t) = t2

	 (b)	x(t) = t(t + 0.5)2

	 (c)	 x(t) = 4e−2t cos(2πt − π/2)
	 2.7	 Sketch these functions
	 (a)	 x(t) = Π(t/2)* [δ(t + 1) + δ(t + 2)]
	 (b)	y(t) = [Λ(t + 1)−Λ(t−1)]∗δ(t)
	 (c)	 z(t) = Π(t/2)* Λ(t)
	 2.8	 Show that
	 (a)	 u(t)* u(t) = r(t)
	 (b)	u(t−1)* u(t−3) = r(t−4)
	 (c)	 ∏(t/τ)* ∏(t/τ) = τΛ(t/τ)
	 2.9	� For an LTI system, the impulse response is h(t) = e−2tu(t). If the input to the 

system is x(t) = 10e−2tu(t), find the output y(t).
2.10	� The input to an LTI system is x(t) = cos(2t), while the impulse response of the 

system is

	

h t e
e t

e t
t

t

t
( )

,| |= =
<
³

ì
í
ï

îï
-

-

0

0

		  Determine the system’s output y(t).
2.11	� The impulse response of a filter is h(t) = e−2tu(t) − δ(t). Find the response of the 

filter to the input e−tu(t).
2.12	� An LTI system has its impulse response h(t) = u(t). Find the response corre-

sponding to the input x(t) = e−2tu(t).
2.13	� Given that the impulse response of a system is h(t) = e−2tu(t), determine the 

system’s response y(t) if the input is
	 (a)	 u(t)
	 (b)	e−tu(t)
	 (c)	 cos(2t)u(t)
2.14	� The impulse response of a low-pass filter is h(t) = e−tu(t). Determine its step 

response, that is, the output when the input is a unit step.
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2.15	 �If h(t) is the impulse response of a system and x(t) is the input, what kinds of 
systems are described by: (a) h(t) = δ(t), (b) h(t) = (d/dt)δ(t), (c) h(t) = u(t).

2.16	 Given that h(t) = 4e−2tu(t) and x(t) = δ(t) − 2e−2tu(t), find y(t) = x(t)*h(t).

Section 2.4—Graphical Convolution

2.17	� Verify the area property of convolution in Example 2.3; that is, if Ax1 and Ax2 
are the areas under x1(t) and x2(t) respectively, the area Ay under y(t) = x1(t)*x2(t) 
is Ay = Ax1Ax2.

2.18	 Perform a graphical convolution of the two signals in Figure 2.29.
2.19	 Find the convolution of x(t) and h(t) in Figure 2.30.
2.20	 Determine the convolution x1(t)*x2(t) for each pair of signals in Figure 2.31.
2.21	 Suppose x(t) = u(t) − u(t − 2), determine y(t) = x(t)*x(t).
2.22	 Obtain the convolution of the two signals in Figure 2.32.

Section 2.5—Block Diagram Representation

2.23	� Two systems are connected in parallel as in Figure 2.33. If the impulse 
responses of the systems are given by

	 h t e u t h t e u tt t
‘ ( ) ( ) ( ) ( )1 1

24= =- -and

	 Find the impulse response of the overall system.
2.24	� Determine the overall impulse response for the system shown in Figure 2.34.

x1(t)

2
1

0 2 4 t 0 1 2 t

x2(t)

FIGURE 2.29  For Problem 2.18.

x(t)

h(t)

2e–t u(t)
1

0 01 2

2

t t

FIGURE 2.30  For Problem 2.19.
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x(t)

h(t)

1
1

0 0 t1 2 t

e–t u(t)

FIGURE 2.32  For Problem 2.22.

x(t) y(t)+
+

–

h1(t)

h2(t)

FIGURE 2.33  For Problem 2.23.
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FIGURE 2.31  For Problem 2.20.
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Section 2.6—Discrete-Time Convolution

2.25	 The following equalities are useful in our studies. Prove each of them.

	 (a)	 a
N a

a

a
a

k N

k
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2.26	 Consider a discrete-time system with impulse response

	 h n u nn[ ] ( . ) [ ]= 0 4

		  If y[n] is the output of the system due to the input

	 x n n n[ ] [ ] [ ]= - +d d1 3

		  find y[2] and y[5].
2.27	 Determine y[n] = x[n]*h[n] for the following pairs of signals:

	 (a)	 x n u n h n u nn[ ] [ ], [ ] [ ]= = 4

	 (b)	x[n] = h[n] = 2nu[n]

	 (c)	 x n u n h n u nn n[ ] ( . ) [ ], [ ] [ ]= =0 3 2

2.28	 Find the convolution of the signals x1[n] and x2[n] given as

	 x n u n x n u nn n
1 22 3 3 2[ ] ( ) [ ], [ ] ( ) [ ]= =

2.29	 Obtain the convolution of x[n] and h[n] shown in Figure 2.35.

x(t) h2(t)

h4(t)

h3(t)

h1(t)

h5(t) y(t)

+
+

–

+

FIGURE 2.34  For Problem 2.24.
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2.30	 Given that x n

n

n h n

n

n

n
[ ]

,

,

,

, [ ]

,

,

,

,

=
=

- =
ì

í
ï

î
ï

=

=
=
=

1 0

1 1

0

1 0

3 1

2 3

0
otherwise

otheerwise

ì

í
ï
ï

î
ï
ï

	 (a)	 Sketch x[n] and h[n].
	 (b)	Find x[n]*h[n].
2.31	 Find the discrete convolution of x[n] and h[n] shown in Figure 2.36.
2.32	 Given that x[n] = u[n] and h[n] = (0.4)n + (0.5)n + 1, n ≥ 0. Find y[n] = x[n]*h[n].

	 Hint: a
a

a
k

k

n n

=

+

å = -
-

0

11
1

.

Section 2.7—Block Diagram Realization

2.33	 Two systems are described by

	 h n u n h n n nn
1 20 4 0 5 1[ ] ( . ) [ ], [ ] [ ] . [ ]= = + -d d

		  Determine the response to the input x[n] = (0.4)nu[n] if
	 (a)	 The two systems are connected in parallel
	 (b)	The two systems are connected in cascade
2.34	� For the interconnection of LTI systems in Figure 2.37, find the overall impulse 

response.

x[n]
h[n]

1 1

–1

0 1 2 n 0
1 3

2 n

FIGURE 2.35  For Problem 2.29.

x[n]

1 1 1

0 1 2 3 n 0

1

2

3

1 2 n

h[n]

FIGURE 2.36  For Problem 2.31.
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Section 2.8—Deconvolution

2.35	� Find the impulse response of a system which yields y[n] = [2 3 −2 4] when 
excited by the input x[n] = [1 0 2].

2.36	� The input x[n] = [1 −1] to a system produces the output y[n] = [4 2 5 1]. 
Determine the impulse response.

Section 2.9—Computing with MATLAB®

2.37	� (a) �Using MATLAB, write a program to convolve x(t) = e−tu(t) and h(t) = u(t) − 
u(t − 2).

	� (b)	�Do the convolution analytically and compare this with MATLAB result in 
part (a).

2.38	 �A filter has the impulse response as

	 h n[ ] { , , , , , , , , , }= - - - - -1 1 1 1 1 1 1 1 1 1

		  Use MATLAB to determine the output due to x[n] = cos(πn/2).
2.39	� An LTI discrete system has the impulse response h[n] = (0.6)n u[n]. Use 

MATLAB to calculate the response of the system to input x[n] = u[n] and plot it.
2.40	 Repeat the previous problem for x[n] = cos(nπ/6)u[n].
2.41	� Given that x[n] = [1 −1 2 4] and y[n] = [2 6 4 0 8 5 12], use MATLAB to find h[n].

Section 2.10—Applications

2.42	 Determine the stability of the LTI system with the following impulse responses.
	 (a)	 h(t) = e2tu(t)
	 (b)	h(t) = sin2t  u(t)
	 (c)	 h(t) = e−tcos2t  u(t)
2.43	 A system has an impulse response h(t) = u(t + 1) − u(t − 1). Is the system stable?
2.44	� State which of the systems represented by the following impulse responses are 

stable or unstable.
	 (a)	 h[n] = δ[n]
	 (b)	h[n] = (−0.5)nu[n]
	 (c)	 h[n] = u[n]−u[n−10]

x[n] h1[n]

h2[n]

h4[n]

y[n]
+

+

–

h3[n]

FIGURE 2.37  For Problem 2.34.
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2.45	� An accumulator has impulse response h[n] = u[n]. Check if an accumulator is 
BIBO stable.

2.46	� The input to the circuit discussed in Example 2.15 is vs(t) = u(t − 1) + δ(t − 2). 
Use convolution to determine the output.

2.47	� Determine the output of the circuit discussed in Practice Problem 2.15 if 
vs(t) = u(t).

2.48	� If the filter in Figure 2.38 has the impulse response h(t) = δ(t)−2e−2tu(t), find 
the step response.

2 Ω
+

+

x(t) y(t)1 H

–
–

FIGURE 2.38  For Problem 2.48.



105

3 The Laplace Transform

The brave man is the man who faces or fears the right thing for the right purpose in the 
right manner at the right moment.

—Aristotle

HISTORICAL PROFILE

Pierre Simon Laplace

Pierre Simon Laplace (1749–1827) was a French astronomer and mathematician, 
whose work was important to the development of mathematical astronomy and sta-
tistics. He also put the theory of mathematical probability on a sound footing. He 
first discovered Laplace’s equation and Laplace transform, which is discussed in this 
chapter. To Laplace, the universe is nothing but a giant problem in calculus.

Laplace was born in Beaumont-en-Auge, Normandy, France on March 23, 1749, and 
died in Paris on March 5, 1827. Laplace became a professor of mathematics at the age 
of 20. He is remembered as one of the greatest scientists of all time. He is sometimes 
referred to as the “Newton of France.” He was widely known for his five-volume work, 
Celestial Mechanics, which supplemented the work of Newton on astronomy. After 
the publication of this work, Laplace continued to apply his ideas of physics to other 
problems such as capillary action, double refraction, the velocity of sound, the theory of 
heat, rotation of the cooling earth, and elastic fluids. He was born and died a Catholic.
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3.1  INTRODUCTION

We saw in Chapter 2 that system analysis in the time-domain involves the evalu-
ation of the convolution integral or sum since the response of the system is given 
by the convolution of the input and the impulse response. This chapter introduces 
the Laplace transform, a very powerful, alternative tool for analyzing systems. The 
Laplace transform is named after Pierre Simon Laplace (1749–1827), the French 
astronomer and mathematician. In contrast to the time-domain models studied in the 
previous chapter, the Laplace transform is a frequency-domain representation that 
makes analysis and design of linear systems simpler.

The Laplace transform is a well-established tool in analyzing continuous-time, 
linear systems. It is important for a number of reasons. First, it is applicable to a 
wider variety of inputs. The Laplace transform of an unbounded signal can be found. 
Second, Laplace transform is powerful for providing us in one single operation the 
complete response, that is, the steady-state plus transient or homogeneous, and par-
ticular. Third, it automatically includes the initial conditions in the system analysis. 
It allows us to convert ordinary differential equations into algebraic equations, which 
are easier to manipulate and solve. It converts convolution into a simple multiplica-
tion. Fourth, we can apply Laplace transform to generate the transfer function repre-
sentation of a continuous-time LTI system.

The chapter begins with the definition of the Laplace transform and uses that defi-
nition to derive the transform of some basic, important functions. We will consider 
some properties of Laplace transform which are helpful in obtaining the Laplace 
transform of other functions. We then consider the inverse Laplace transform. We 
apply all these to solving integro-differential equations and system analysis, espe-
cially in circuit and control systems. We finally demonstrate how MATLAB® can be 
used to do most of what we cover in this chapter.

3.2  DEFINITION OF THE LAPLACE TRANSFORM

There are two types of Laplace transforms:
	 1.	The two-sided (or bilateral) Laplace transform:
		  The two-sided Laplace transform allows time functions to be nonzero for 

negative time.

	

L[ ( )] ( ) ( )x t X s x t e dtst= = -

-¥

¥

ò
	

(3.1)

		  where s is the complex frequency given by

	 s j= +s w 	 (3.2)

		  where σ (in Np/s) and ω (in rad/s) are the real and imaginary parts of s, 
respectively. The advantage of the bilateral Laplace transform is that it can 
handle both causal and noncausal signals over −∞ to ∞.
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	 2.	The one-sided (or unilateral) form:
		  A one-sided Laplace transform is zero for negative time, that is, t < 0. It is 

found from Equation 3.1 by setting the lower limit of the integral equal to zero.

	

L[ ( )] ( ) ( )x t X s x t e dtst= = -

¥

-
ò
0

	 (3.3)

		  where 0− denotes a time just before 0.
		  The one-sided Laplace transform is a more commonly used transform 

than the two-sided Laplace transform, because we encounter only positive-
time signals in practice and it is defined for positive-time signals.

		  According to Equation 3.3, the t-domain signal x(t) is changed into the 
s-domain function X(s).

The Laplace transform of a signal x(t) is the integration of the product of x(t) 
and e−st over the interval from 0 to +∞.

In inverse Laplace transform the s-domain X(s) is changed back to t-domain x(t) 
and is given as

	

L-

- ¥

+ ¥

= = ò1 1
2

1

1

[ ( )] ( ) ( )X s x t
j

X s e dsst

j

j

p
s

s

	 (3.4)

where the integration is performed along a straight line (σ1 + jω,  −∞ < ω < ∞) as 
shown in Figure 3.1. The Laplace transform pair x(t) and X(s) are represented as

	 x t X s( ) ( )Û 	 (3.5)

because there is one-to-one correspondence between x(t) and X(s).

jω

σc σσ1

FIGURE 3.1  Region of convergence for the Laplace transform.
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A signal x(t) is Laplace transformable if the integral in Equation 3.3 exists; that is, 
in order for x(t) to have a Laplace transform, the integral in Equation 3.3 must con-
verge. The integral converges when

	

x t e dtj t( ) ( )- +

¥

-
ò < ¥s w

0

	 (3.6)

This can be simplified as

	

x t e dt x t e dt

x t e dt

j t j t

j t

( ) ( )

( )

( ) ( )

( )

- +

¥

- +

¥

- +

- -
ò ò£

£ < ¥

s w s w

s w

0 0

0--

¥

ò
	

(3.7)

Since |ejωt| = 1 for any value of t,

	

x t e dtt( ) -

¥

< ¥
-
ò s

0

	 (3.8)

for some real value of σ = σc. The inequality in Equation 3.8 states that the Laplace 
transform exists. Hence, the region of convergence (ROC) for Laplace transform 
is Re(s) = σ > σc, as shown in Figure 3.1, the ROC means, the range of s for which 
the Laplace transform converges. We cannot define X(s) outside the region of con-
vergence. The portion of the s plane in which the integral converges is found by the 
value of σ. All signals that we come across within the system analysis fulfill the con-
vergence criterion in Equation 3.8 and have their corresponding Laplace transforms.

Example 3.1

Find the Laplace transform of the following functions and establish the ROC for 
each case.

	 (a)	 e−5tu(t)
	 (b)	 δ(t)

Solution

	 (a)	 For the exponential function, shown in Figure 3.2a, the Laplace transform is

	

L[ ( )] ( )e u t e e dt
s

e
s

t t st s t-

¥

- - -
-

-

-
¥5

0

5 51
5 0

1
5

= =
+

=
+ò + 	 (3.1.1)
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		  Notice that lim ( )

t

s te
®¥

- + =5 0 only if Re(s + 5) > 0 or Re(s) > −5. Alternatively, 

the ROC is obtained from

	
e e e es t t j t t- + - + - - += = < ¥( ) ( ) ( )5 5 5s w s

		  which is valid when σ + 5 > 0 or σ > −5. The result in Equation 3.1.1 is so 
important that it deserves boxing. In general,

	

L[ ( )]e u t
s a

at- =
+
1

	 (3.1.2)

		  A special case of this is when a = 0. e−atu(t) becomes u(t) and we have

	

L[ ( )]u t
s

=
1 	 (3.1.3)

	 (b)	 For the unit impulse function, shown in Figure 3.2b,

	

L[ ( )] ( )d d
-

¥

- -t t e dt e sst= = =ò
0

0 1 for all 	 (3.1.4)

	 The sifting property in Equation 1.28 has been applied in Equation 3.1.4. 
In this case, the transform does not depend on s and hence the region of 
convergence is the entire s plane.

Practice Problem 3.1  Determine the Laplace transform of these functions and 
specify the region of convergence for each:

	 (a)	 h t
t

u t( ) ( )=
2

2
	 (b)	 e−jωtu(t)

Answers: (a) 1/s3, Re(s) > 0, (b) 1/(s + jω), Re(s) > 0.

1

0

e–atu(t)
δ(t)

(a) (b)
t 0 t

FIGURE 3.2  For Example 3.1: (a) Exponential function, (b) unit impulse function.
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Example 3.2

Find the Laplace transform of x(t) = sin ωt u(t).

Solution

The Laplace transform of the cosine function is

	

X s t t e dt
e e

j
e dtst

j t j t
st( ) [sin ] (sin )= = =

æ

è
ç

ö

ø
÷ò òL w w

-
¥

-

¥ w - w
-

0 0
2

== ( )

=
+

æ

è
ç

ö

ø
÷ =

+

ò +1
2

1
2

1 1

0

2

j
e e dt

j s j s j s

s j t s j t

¥

- - w - w-

- w
-

w
w

w

( ) ( )

22

Practice Problem 3.2  Find the Laplace transform of x(t) =10 cos ωt.

Answer: 
10

2 2

s
s + w

3.3  PROPERTIES OF THE LAPLACE TRANSFORM

The properties of the Laplace transform are summarized below, which are useful to 
obtain the transform of many signals. Some of the properties are linearity, scaling, time 
shifting, frequency shifting, time differentiation, time convolution, time integration, 
frequency differentiation, time periodicity, modulation, and initial and final values.

3.3.1 L inearity

Let the Laplace transform of two signals x1(t) and x2(t) be X1(s) and X2(s), respectively. 
Then the linearity property states that the Laplace transform of the sum of two func-
tions of time is equal to the sum of the transforms of each function and is given as

	
L a x t a x t a X s a X s1 1 2 2 1 1 2 2( ) ( ) ( ) ( )+êë úû = + 	 (3.9)

where a1 and a2 are constants.
The linearity property is explained as follows:

	

L[ ( ) ( )] [ ( ) ( )]

( )

a x t a x t a x t a x t e dt

a x t e d

at

at

1 1 2 2 1 1 2 2

0

1 1

+ = +

=

-

¥

-

ò

tt a x t e dt

a X s a X s

at+

= +

¥

-

¥

ò ò2

0

2

0

1 1 2 2

( )

( ) ( )

	

(3.10)
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For example, consider

	 x t e et t( ) .= + -3 54 6 	 (3.11)

By using linearity property, X(s) = L[3e4t + 5e−6t] = L[3e4t] + L[5e−6t]

	
X s

s s
( ) =

-
+

+
3

4
5

6
	 (3.12)

3.3.2 S caling

Let X(s) be the Laplace transform of the signal x(t). Let a be any positive real con-
stant, then Laplace transform of x(at) is given as

	

L[ ( )] ( )x at x at e dtst= -

¥

ò
0

	 (3.13)

Let λ = at, dλ = a dt, we obtain

	

L[ ( )] ( ) ( )x at x e e
d

a a
x e d

s

a

s

a= =-
- æ

è
ç

ö
ø
÷

¥
- æ

è
ç

ö
ø
÷

¥

ò òl l l ll
l l

0 0

1
	 (3.14)

Thus, the scaling property is obtained as

	

L[ ( )] ,x at
a

X
s

a
a= æ

è
ç

ö
ø
÷ >1

0 	 (3.15)

The unilateral Laplace transform is valid only for causal signals and not valid for 
noncausal signal (when a is negative i.e., a < 0).

For example, consider

	
L[ ( )]r t

s
= 1

2 	 (3.16)

By applying the scaling property,

	
L[ ( )]

( )
r t

s s
2

1
2

1
2

2
2 2= =

/
	 (3.17)
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3.3.3 T ime Shifting

Often we can see that there is a signal delay in control systems due to transmission 
delays or other effects. Let X(s) be the Laplace transform of signal x(t). Then time 
shifting is given as

	
L x t a u t a e X ss( ) ( ) ( )- -éë ùû = -a 	 (3.18)

If a function is delayed in time by a, then the Laplace transform of the function is 
multiplied by e−αs. The time shifting property can be proved as follows:

	

L[ ( ) ( )] ( ) ( ) ,x t a u t a x t a u t a e dt ast- - = - - ³-

¥

ò
0

0 	 (3.19)

If u(t − a) = 0 for t < a and u(t − a) = 1 for t > a
then,

	

L[ ( ) ( )] ( )( )x t a u t a e dt x t a e dtst st

a

- - = + -- -

¥¥

òò0 1
0

	 (3.20)

by substituting λ = t − a, dλ = dt, and t = λ + a. As t→a, λ→0, and as t→∞, λ→∞
thus,

	

L[ ( ) ( )] ( )

( )

( )x t a u t a x e

e x e d

e X

s a d

as s

as

- - =

=

=

- +

¥

- -

¥

-

ò

ò

l

l l

l l

l

0

0

(( )s

	

(3.21)

For example, consider

	 g t u t u t( ) ( ) ( ).= - - -4 6 	 (3.22)

We know that L[ ( )]u t
s

= 1

Using linearity property and the time shifting property,

	
G s u t u t

s
e

s
e

s
e es s s s( ) [ ( ) ( )]= = = ( )L - - - - -- - - -4 6

1 1 14 6 4 6 	 (3.23)
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3.3.4  Frequency Shifting

Let X(s) be the Laplace transform of the signal x(t). Then the frequency shifting is 
given as

	

L e x t u t e x t e dt x t e dt X s aat at st s a t- - -

¥

- +éë ùû = = = +ò( ) ( ) ( ) ( ) ( )( )

0 0

¥¥

ò
	 (3.24)

	
L e x t u t X s aat-éë ùû = +( ) ( ) ( )

The Laplace transform turns multiplication by e−at in the time-domain into s + a in 
the transform X(s).

For example, consider

	
cos ( )w

w
tu t

s

s
Û

+2 2 	 (3.25)

By applying the frequency property and replacing every s by s + a, the Laplace trans-
form of the cosine function is given by

	
L[ cos ( )]

( )
e tu t

s a

s a
at- w

w
= +

+ +2 2 	 (3.26)

3.3.5 T ime Differentiation

Time differentiation property is important for solving differential equations. Let X(s) 
be the Laplace transform of the signal x(t). The Laplace transform of the derivative 
of x(t) is given as

	

L
dx

dt
u t

dx

dt
e dtst( ) ( )é

ëê
ù
ûú

= -

-
ò
0

	 (3.27)

By differentiation by parts, U = e−st, dU = −se−stdt, and dV
dx

dt
dt dx= æ

è
ç

ö
ø
÷ = , V = x(t), 

then

	

L
dx

dt
u t x t e x t se dt

x s

st st( ) ( )

( )

( )é
ëê

ù
ûú

= - -éë ùû

= - +

- ¥ -

¥

-

- ò0
0

0 0 xx t e dt

sX s x

st( )

( ) ( )

-

¥

-

-
ò

= -

0

0

	 (3.28)

	
L ¢éë ùû = - -x t sX s x( ) ( ) ( )0
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By differentiating the above equation, we get

	

L L
d x

dt
s x t x s sX s x x

s

2

2 0 0 0
é

ë
ê

ù

û
ú = éë ùû - = -éë ùû - ¢

=

¢ ¢ - - -( ) ( ) ( ) ( ) ( )

22 0 0X s sx x( ) ( ) ( )- - ¢- - 	 (3.29)

	
L ¢¢éë ùû = - - ¢- -x t s X s sx x( ) ( ) ( ) ( )2 0 0

In the same way, for the nth derivative, we get

	

L
d x

dt
s X s s x s x s x

n

n
n n n né

ë
ê

ù

û
ú = - - - -¢- - - - -( ) -( ) ( ) ( ) ( )1 2 1 0 10 0 0� 	 (3.30)

For example, consider x(t) = cos ωt u(t). Then at t = 0, we have x(0) = 1. By applying 
time differentiation, the Laplace transform of the derivative of x(t) is

	

L
d

dt
tu t s

s

s
u

s

s

cos ( ) cos( ) ( )w
w

-

w

- -é
ëê

ù
ûú

=
+

æ
è
ç

ö
ø
÷

=
+

2 2

2

2 2

0 0

	
(3.31)

3.3.6 T ime Convolution

Let X(s) and H(s) be the Laplace transform of the signal x(t) and h(t). Then the con-
volution property is given as

	
L[ ( )* ( )] ( ) ( )x t h t X s H s= 	 (3.32)

In time-domain the convolution property,

	 x t h t x t h d( )* ( ) = -( ) ( )
¥

ò t t t
0

Considering the Laplace transform on both sides

	

L

L

x t h t h x t d e dt

x t h t

st( ) ( )éë ùû = -
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ë
ê
ê

ù

û
ú
ú
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¥

-

¥

òò* ( ) ( )

( )* ( )

t t t
00
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é

ë
ê
ê

ù

û
ú
ú

-

¥¥

òòh x t e dt dstt t t( )
00 	

(3.33)
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Let λ = t − λ so that t = τ + λ and dt = dλ

	

L x t h t h x e d d

h e

s t

st

( )* ( ) ( )éë ùû = ( )
é

ë
ê
ê

ù

û
ú
ú

= ( )

¥
- +( )

¥

-

ò òt l l t
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l

0 0

dd x e d H s X sst l ll

0 0

¥

-

¥

ò ò =( ) ( ) ( )
	

(3.34)

For example, consider

	 g t u t u t( ) ( ) ( ).= - - -3 4

By applying the Laplace transform on both sides

	
G s

s
e es s( ) = -( )- -1 3 4

Considering the convolution of g(t)*g(t), which is G2(s),

	
G s

s
e e

s
e e es s s s s2

2
3 4 2

2
6 7 81 1

2( ) = -( ) = - +( )- - - - - 	 (3.35)

By applying inverse Laplace transform, we get

	

x t g t g t t u t t u t t u t

r t

( ) ( )* ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

= = - - - - - + - -

= -

6 6 2 7 7 8 8

6 -- - + -2 7 8r t r t( ) ( )
	

(3.36)

3.3.7 T ime Integration

Let X(s) be the Laplace transform of the signal x(t). Then Laplace transform of the 
integral is given as

	

L x t dt
s

X s

t
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ê
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ù

û
ú
ú

=ò
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From the convolution property, we get
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For example, let x(t) = u(t). We know that X(s) = 1/s. By applying the time integration 
property,

	

L
0

2

1 1 1
t

u t dt L t
s s sò

é

ë
ê
ê

ù

û
ú
ú

= = =( ) [ ]

3.3.8  Frequency Differentiation

Let X(s) be the Laplace transform of the signal x(t). Then Laplace transform of the 
frequency differentiation is given as

	
L tx t

dX s

ds
( )

( )
éë ùû = -

X(s) is given as

	

X s x t e dtst( ) = ( ) -

¥

ò
0

Differentiating both sides, we get

	

dX s

ds
x t te dt tx t e dt tx tst st( )
( )( ) ( ) ( )= - = -( ) = -éë ùû

-

¥

-

¥

ò ò
-0 0

L

The frequency differentiation property is given as

	
L tx t

dX s

ds
( )

( )
éë ùû = - 	 (3.38)

Similarly, the general form of frequency differentiation property is given as

	
L t x t

d X s

ds
n n

n

n( ) ( )éë ùû = -
( )

1 	 (3.39)

For example,

	
L t t

d

ds

s

s

s

s
cos

( )
w -

w
- w

w
( ) =

+
é
ëê

ù
ûú

=
+2 2

2 2

2 2 2 	 (3.40)

	
L t t

d

ds s

s

s
sin

( )
w - w

w
w
w

( ) =
+

é
ëê

ù
ûú

=
+2 2 2 2 2

2
	 (3.41)
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3.3.9 T ime Periodicity

Consider a periodic signal x(t) and it can be expressed as a sum of time-shifted func-
tions as (Figures 3.3 and 3.4)

	

x t x t x t x t

x t x t T u t T x t T u t

( )

( ) (

( ) ( ) ( )

( ) ( ) ( )

= + + +

= + - - + - -

1 2 3

1 1 1 2 2

�

TT ) +�
	

(3.42)

where 0 < t < T. By applying the Laplace transform and the time-shifting property, 
we get

	

X s X s X s e X s e X s e

X s e e

Ts Ts Ts

Ts

( ) ( ) ( ) ( ) ( )

( )

= + + + +

= + +

- - -

-

1 1 1
2

1
3

1 1

�

-- -+ +éë ùû
2 3Ts Tse �

	
(3.43)

x(t)

0 T 2T 3T t

FIGURE 3.3  A periodic function.

0

x1 (t)

x2 (t)

x3 (t)

T t

T

T 2T 3T0

t

t

2T

FIGURE 3.4  Decomposition of the periodic function in Figure 3.3.
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But

	
1

1
1

2 3+ + + + =
-

a a a
a

� 	 (3.44)

if |a| < 1.

	
X s

X s

e Ts( )
( )=

- -
1

1
	 (3.45)

For example, consider

	

x t
t t

t

X s x t e dt t est st

1

1 1

0 1

0 1 2
( )

( ) ( )

sin ,

,

sin

=
< <
< <
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p

p ddt
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e

a b
a bt b btat
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0

1

0

2 2

òò

ò

¥

=
+

-sin ( sin cos )

	 (3.46)

where
a = −s
b = π

	

X s
e

s
s t t

e

s
T

st s

1 2 2
0

1

2 2

1
2( ) sin cos

( )
,=

+
- -éë ùû = +

+
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	 (3.47)
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1
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(3.48)

3.3.10 M odulation

Let X(s) be the Laplace transform of the signal x(t), then for any real number ω,

	

L

L

x t t X s j X s j

x t t
j

X s

( )cos

( )sin [ (

w w w

w

éë ùû = +( ) + -( )éë ùû

éë ùû = +

1
2

2
jj X s jw w) ( )]- -

	 (3.49)



119The Laplace Transform

The signals x(t) cos ωt and x(t) sin ωt can be expressed as

	

x t t x t e e

x t t
j

x t e e

j t j t

j t j t

( )cos ( )

( )sin ( )

w

w

w w

w w

= +éë ùû

= -é

-

-

1
2

1
2 ëë ùû

	 (3.50)

From Equation 3.24,

	
L e x t X s jj t± ( )éë ùû = ±( )w w 	 (3.51)

For example, we know that

	 u t
s

( ) Û 1
	 (3.52)
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+
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+
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û
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	 (3.53)

3.3.11 I nitial and Final Values

The initial value x(0) and final value x(∞) are used to relate frequency domain 
expressions to the time-domain as time approaches zero and infinity, respectively. 
These properties can be derived by using the differentiation property as

	

sX s x
dx

dt

dx

dt
e dtst( ) ( )- = é

ëê
ù
ûú

=- -

¥

ò0
0

L 	 (3.54)

By taking limits, we get

	 lim ( ) ( )
s

sX s x
®¥

-éë ùû =0 0

Since x(0) is not dependent on s,

	
x sX s

s
( ) lim ( )0 =

®¥
	 (3.55)
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This is called the initial-value theorem. x(0) can be found using X(s), without using 
the inverse transform of x(t).

If we consider s→0, then

	

sX s x
dx

dt
e dt dx x xt( ) ( ) ( )- ( ) = = = ¥ -- - -

¥¥

--
òò0 00

00

	
x sX s

s
( ) lim ( )¥ =

®0
	 (3.56)

This is known as the final-value theorem. In the final-value theorem, all poles of X(s) 
must be located in the left half of the s-plane.

For example, consider

	
x t e t u t X s

s

s

s
t( ) cos ( ) ( )

( )
= + Û = + +

+ +
-4 3

4 2
2 3

2
2 2 	 (3.57)

By applying the initial-value theorem,

	

x sX s
s s

s s

s

s

s s

s

( ) lim ( )0 4
2

4 13
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++
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1 0 0

0 5
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	 (3.58)

As another example, consider

	
x t e u t X s

s s
t( ) ( ( ) ( )= + Û = +

+
-5

5 1
2

2 ) 	 (3.59)

Using the final-value theorem,

	
x sX s

s

ss s
( ) lim ( ) lim¥ = = +

+
æ
è
ç

ö
ø
÷ = + =

® ®0 0
5

2
5 0 5 	 (3.60)

The final-value theorem cannot be used to find the value of x(t) = cos 2t, because X(s) 

has poles at s j= ± 2 , which are not in the left half of the s plane.

For convenience, Table 3.1 provides the derived list of properties of Laplace 
transform, while Table 3.2 gives the Laplace transform of some common functions. 
For signals in Table 3.2, we have omitted the factor u(t) except where it is necessary 
because we are only interested in functions that exist for t > 0.
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TABLE 3.1
Properties of the Laplace Transform

Property x(t) X(s) 

Linearity a1x1(t) + a1x2(t) a1X1(s) + a2X2(s)

Scaling x(at)
1

0
a

X
s

a
a

æ

è
ç

ö

ø
÷ >,

Time shifting x(t − a) u(t − a) e−asX(s)

Frequency shifting e−atx(t) X(s + a)

Time differentiation dx

dt
sX(s)  − x(0−)

Second derivative d x

dt

2

2
s2X(s)−sx(0−)−x′(0−)

Third derivative d x

dt

3

3
s3X(s)−s2x(0−)−sx′(0−)−x″(0−)

nth derivative
d x

dt

n

n snX(s)−sn−1x(0−)−sn−2x’(0−)−…−x(n−1)(0−)

Time convolution x(t)*h(t) X(s)H(s)

Frequency convolution x1(t)x2(t)
1

2
1 2pj

X s X s( )* ( )

Time integration x t dt

t

( )
0
ò

1
s

X s( )

Frequency integration
x t

t

( ) X d
s

( )l l
¥

ò
Frequency

Differentiation tx(t) -
d

ds
X s( )

Multiplication by t t x tn n ( ) ( ) ( )-1 n
n

n

d

dx
X s

Time periodicity x(t) = x(t + nT) X s

e sT
1

1

( )

- -

Modulation

Multiplication by cos ωt x(t) cosωt
1
2

X s j X s j( ) ( )+ + -éë ùûw w

Multiplication by sin ωt x(t) sinωt
j

X s j X s j
2

( ) ( )+ - -éë ùûw w

Initial value x(0) lim ( )
s

sX s
®¥

Final value x(∞) lim ( )
s

sX s
®0
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TABLE 3.2
Laplace Transform Pairsa

Entry No. x(t) X(s) 

1. δ(t) 1

2. u(t) 1/s

3. u(t)  − u(t  − a) 1- -e

s

as

4. e−at 1
s a+

5. t 1
2s

6. tn n

sn

!
+1

7. te−at 1
2( )s a+

8. tne−at n

s a n

!

( )+ +1

9. sin ωt w
ws2 2+

10. cos ωt s

s2 2+ w

11. sin(ωt + θ) s

s

sin cosq w q
w

+
+2 2

12. cos(ωt + θ) s

s

cos sinq w q
w

-
+2 2

13. e−atsinωt w
w( )s a+ +2 2

14. e−atcosωt s a

s a

+
+ +( )2 2w

15. t sin ωt 2
2 2 2

w
w
s

s( )+

16. t cos ωt s

s

2 2

2 2 2

-
+

w
w( )

17. sinh ωt w
ws2 2-

18. cosh ωt s

s2 2- w

a	 Defined for t ≥ 0; x(t) = 0 for t < 0.
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Example 3.3

Obtain the Laplace transform of

	 x t t u t e u tt( ) ( ) ( ) ( ).= - + -d 3 5 2

Solution

By the linearity property,

	

X s t u t e u t

s s
s s

s s

t( ) [ ( )] [ ( )] [ ( )]

(

= +

= +
+

=
+

+

L L Ld -

-
-

-3 5

1 3
1

5
1

2
4 6

2

3

22)

Practice Problem 3.3  Find the Laplace transform of x(t) = [cos3t + e−5t]u(t)

Answer: X s
s s

s s
( )

( )( )
=

+ +
+ +

2 5 9
5 9

2

2

Example 3.4

Determine the Laplace transform of x(t) = t2u(t−1).

Solution

We can rewrite x(t) as

	 x t t u t t u t t u t u t( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= - + - = - - - - - + -1 1 1 1 1 2 1 1 12 2

Using the time-shifting property, we obtain

	
X s e

s s s
s( ) = - +æ
è
ç

ö
ø
÷

- 2 2 1
3 2

Practice Problem 3.4  Find the Laplace transform of x(t) = e−3tcos2tu(t)

Answer: s
s

+
+ +

3
3 42( )

Example 3.5

Determine the transform of the gate function in Figure 3.5a and the triangular 
pulse in Figure 3.5b.

Solution

	 (a)	 The gate function in Figure 3.5b can be expressed as

	 g t u t u t( ) ( ) ( )= - -1
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		  We know that the Laplace transform of u(t) is 1/s. We apply the time shift 
property to the second term and obtain

	
G s

s
e
s s

e
s

s( ) = -
æ

è
ç

ö

ø
÷ = -( )

-
-1 1

1

	 (b)	 The signal may be described as h(t) = tg(t). Using the frequency differentia-
tion property,

	
H x

dG s
ds

d
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e
s s

e
s

e
s

s s s

( )
( )

= - = -
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è
ç
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ø
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2 2

		  Alternatively, we can express h(t) = r(t) − r(t − 1) − u(t − 1). Taking the 
Laplace transform for each term gives the same result.

Practice Problem 3.5  Find the Laplace transform of the signals x(t) and y(t) in 
Figure 3.6.

Answers: (a) X s
e

s

s

( )
( )

=
-

+

- +1
2

2

, (b) Y s
e

s

s

( )
( )

=
+
+

-p
p

1
2 2

g(t)

1 1

00
(a) (b)

11 tt

h(t)

FIGURE 3.5  For Example 3.5.

x(t)

1

10
(a) (b)

t 10 t

1

y(t)

sin πt
e–2t

FIGURE 3.6  For Practice Problem 3.5.
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Example 3.6

Let the Laplace transform of a signal x(t) be

	
X s

s
s s

( ) =
+

+ +
2

3 52

Determine the Laplace transform of the following signals:

	 (a)	 y(t) = 3x(t/2)
	 (b)	 z(t) = tx(t − 1)

	 (c)	 h t
dx
dt

( ) = 3

	 (d)	 g t x d

t

( ) ( )= ò t t
0

Solution

	 (a)	 We apply the scaling property with a = 1/2.

	
Y s X s

s
s s

s
s s

( ) ( )
( )

( ) ( )
( )

= ( ) =
+

+ +
=

+
+ +

3 2 2
6 2 2

2 3 2 5
12 1

4 6 52 2

	 (b)	 z(t) = tx(t−1) = (t−1)x(t−1) + x(t−1)
		  Taking the Laplace transform of each term and using the shifting and 

differentiation properties, we obtain

	

Z s e
d
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X s e X s e
s s s s
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+ +

+
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)
( )

( )
( )

( )
( ))

	 (c)	 Applying the differentiation property,

	 H(s) = 3[sX(s) − x(0)]

		  The initial-value theorem gives

	

x sX s
s s

s s
s

s ss s s
( ) lim ( ) lim lim0

2
3 5

1 2
1 3 5

2

2 2= =
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2
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s s
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s s
( )

( )
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+
+ +

-
é

ë
ê

ù

û
ú =

- +
+ +

	 (d)	 Using the integration property,

	
G s

s
X s

s
s s s

( ) ( )
( )

= =
+

+ +
1 2

3 52
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Practice Problem 3.6  Let H s h t
s

s s
( ) [ ( )]

( )
= =

+
+

L
2
5

. Find the Laplace transform of:

	 (a) h(t − 2), (b) h(4t), (c) d
dt

h t( ) , (d) h(t)*h(t)

Answers: (a) ( )
( )

s e
s s

s+
+

-2
5

2

, (b) 
s

s s
+
+

8
20( )

, (c) 
-
+
3
5s

, (d) ( )
( )
s

s s
+
+
2
5

2

2 2

Example 3.7

Determine the initial and final values of x(t), if they exist, given that

	
X s

s s
s s s

( )
( )( )

=
- +

- + +

2

2

2 1
2 2 4

Solution

	

x sX s
s s s

s s s
s

s s s
( ) lim ( ) lim

( )( )
lim0

2
2 2 4

1
2 1

3 2

2= =
- +

- + +
=

- +

®¥ ®¥ ®¥

ss

s s s

2

21
2

1
2 4

1
-æ

è
ç

ö
ø
÷ + +æ

è
ç

ö
ø
÷

=

One pole (s = 2) is not in the left-half plane. x(∞) does not exist.

Practice Problem 3.7  Find the initial and final values of

	
X s

s
s s

( ) =
+

+ +

2

3 2

3
4 6

Answer: x(0) = 1; x(∞) does not exist.

3.4  THE INVERSE LAPLACE TRANSFORM

For a given X(s), we can obtain the corresponding x(t) by using Equation 3.4, but this 
requires contour integration, which is beyond the scope of this text. We will use an 
easier approach by employing the partial fraction expansion of X(s) and matching 
entries in Table 3.2.

In most cases, we can express X(s) in the standard form of

	
X s

N s

D s
( )

( )
( )

= 	 (3.61)

where
N(s) is the numerator polynomial
D(s) is the denominator polynomial
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Equation 3.61 can be expressed as

	
X s

N s

D s

b s b s b s b s b

a s a s
m

m
m

m
m

m

n
n

n
n( )

( )
( )

= = + + + + +
+

-
-

-
-

-
-

1
1

2
2

1 0

1
1

�
++ + + +-

-a s a s an
n

2
2

1 0�
	 (3.62)

We can express X(s) in terms of factors of N(s) and D(s) as

	
X s

N s

D s
k

s z s z s z

s p s p s p
m

n

( )
( )
( )

( )( ) ( )
( )( ) ( )

= = + + +
+ + +

1 2

1 2

�
�

	 (3.63)

where k = bm/an. The roots of N(s) = 0 are called the zeros of X(s), that is, the values 
−z1,−z2,…,zm are the zeros of X(s).

Similarly, the roots of D(s) = 0 are the poles of X(s), that is, the values −p1,−p2,…,pn 
are the poles of X(s). We assume that X(s) is proper (m < n), that is, the degree of N(s) 
is less than the degree of D(s). (In case X(s) is not proper (m > n), we use long divi-
sion to reduce it proper fraction.) We use partial fraction to break X(s) down into 
simple terms whose inverse transform is obtained by matching entries in Table 3.2. 
Partial fraction expansions are useful in finding the inverse Laplace, inverse Fourier, 
or inverse z-transforms. Thus, to find the inverse Laplace transform of X(s) requires 
two steps:

	 1.	Use partial fraction expansion to break X(s) into simple terms.
	 2.	Refer to Table 3.2 to obtain the inverse Laplace transform of each term.

We will now consider the three common forms X(s) may take and how we apply the 
two steps to each form.

3.4.1 S imple Poles

A simple pole is a first-order pole. If the poles s = −p1,−p2,…,−pn are simple and 
distinct (pi ≠ pj for all i ≠ j), then D(s) in Equation 3.63 becomes a product of factors, 
so that

	
X s

N s

s p s p s pn

( )
( )

( )( ) ( )
=

+ + +1 2 �
	 (3.64)

Using partial fraction expansion, we decompose X(s) in Equation 3.64 as

	
X s

k

s p

k

s p

k

s p
n

n

( ) =
+

+
+

+ +
+

1

1

2

2

� 	 (3.65)
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To get the expansion coefficients k1, k2,…, kn (known as the residues of X(s)), we mul-
tiply both sides of Equation 3.65 by (s + pi) for each pole. For example, if we multiply 
by (s + p1), we obtain

	
( ) ( )

( ) ( )
s p X s k

s p k

s p

s p k

s p
n

n

+ = + +
+

+ + +
+1 1

1 2

2

1� 	 (3.66)

Setting s = −p1 in Equation 3.66 leaves only k1 on the right-hand side of Equation 
3.66. By isolating k1 this way, we obtain

	
( ) ( )s p X s k

s p
+ =

=-1 1
1

	 (3.67)

In general,

	
k s p X si i s pi

= +
=-

( ) ( ) 	 (3.68)

This is referred to as Heaviside’s formula. From Table 3.2, the inverse transform of 
each term in Equation 3.65 is

	 L- -1[ / ( )] ( )k s a ke u tat+ = 	 (3.69)

Applying Equation 3.69 to each term in Equation 3.65 leads to the inverse Laplace 
transform of X(s) as

	
x t k e k e k e u tp t p t

n
p tn( ) ( )= + + +( )- - -

1 2
1 2 �

	
(3.70)

3.4.2 R epeated Poles

If X(s) has repeated poles, we employ a different strategy. Let X(s) have n repeated 
poles at s = −p, then we may represent X(s) as

	
X s

k

s p

k

s p

k

s p

k

s p
X sn

n
n

n( )
( ) ( ) ( )

( )=
+

+
+

+ +
+

+
+

+-
-

1
1

2
2

1
1� 	 (3.71)

where X1(s) stands for the remaining part of X(s) that does not contain the repeated 
poles. We find the coefficient kn as

	
k s p X sn

n

s p
= +

=-
( ) ( ) 	 (3.72)
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as in Equation 3.68 To determine kn−1, we multiply each term in Equation 3.71 by 
(s + p)n, differentiate, and then set s = −p to get rid of the other coefficients except 
kn−1. Thus, we obtain

	

k
d

ds
s p X sn

n

s p

-
=-

= +éë ùû1 ( ) ( ) 	 (3.73)

We repeat the same process to get

	

k
d

ds
s p X sn

n

s p

-

=-

= +éë ùû2

2

2

1
2!

( ) ( ) 	 (3.74)

The mth repetition gives

	

k
m

d

ds
s p X sn m

m

m
n

s p

-

=-

= +éë ùû
1

!
( ) ( ) 	 (3.75)

where m = 1, 2, 3,…, n − 1. From Table 3.2,

	
L-

- -

-
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11
1( ) ( )!s a

t e
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ê

ù

û
ú = 	 (3.76)

We apply this to each term in Equation 3.71 and obtain

	

x t k e k te
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t e
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t e u tpt pt pt n n pt( )

! ( )!
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	 (3.77)

3.4.3  Complex Poles

We now consider when X(s) has complex poles. Complex poles occur in complex con-
jugate pairs so that the number of poles is even. A pair of complex poles is simple if 
it is not repeated. Simple complex poles may be handled the same way as simple real 
poles, but the procedure involves complex algebra, which can be intimidating. An 
easier approach involves completing the squares. The idea is to express each com-
plex pole pair (or quadratic term) in D(s) as a complete square such as (s + α)2 + β2 
and then use Table 3.2 to find the inverse of the term.

For the sake of simplicity, we will assume that X(s) has only one complex pole 
pair. If X(s) has complex roots, its denominator D(s) will contain a quadratic term 
and X(s) may have the form

	
X s

A s A

s as b
X s( ) ( )= +

+ +
+1 2

2 1 	 (3.78)
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where X1(s) stands for the remaining part of X(s) that does not contain this pair of 
complex poles. We complete the square by letting

	 s as b s s s2 2 2 2 2 22+ + = + + + = + +a a b a b( ) 	 (3.79)

and we also let

	 A s A A s B1 2 1 1+ = + +( )a b

Thus, Equation 3.78 becomes

	
X s

A s

s

B

s
X s( )

( )
( ) ( )

( )= +
+ +

+
+ +

+1
2 2

1
2 2 1

a
a b

b
a b

	 (3.80)

Using entries in Table 3.2, we obtain the inverse Laplace transform of each term in 
Equation 3.80 so that

	
x t A e t B e t u t x tt t( ) cos sin ( ) ( )= +( ) +- -

1 1 1
a ab b 	 (3.81)

The sine and cosine terms can be combined if desired. We use

	 A B Rcos sin cos( )q q q f+ = - 	 (3.82)

where

	

R A B

B A

= +

= -

2 2

1f tan ( )/

In addition to the three common forms considered above, we can have two other 
cases. First, the term may involve e−sT. For example, X(s)e−sT corresponds to x(t − T) 
u(t − T) using the time-shifting property. Second, for X(s) = N(s)/D(s), when the 
degree of the numerator N(s) is higher than the degree of the denominator D(s), we 
use long division to express X(s). These two cases are best illustrated with Examples 
3.13 and 3.14.

Example 3.8

Find the inverse Laplace transform of

	
X s

s s
s

s
( ) = + +

-
-

+
1

2 4
1

3
92
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Solution
The inverse transform is obtained by consulting Table 3.2 for each term.

	

x t
s s

s
s

t

( )

( )

= ( ) + æ
è
ç

ö
ø
÷ + æ

è
ç

ö
ø
÷ +

æ
è
ç

ö
ø
÷

=

L L L L- - - -

-
-

d

1 1 1 1
21

2 4
1

3
9

++ +( cos ) ( )2 4 3 3e t u tt -

Practice Problem 3.8  Determine the inverse Laplace transform of

	
X s

s s s
( ) = -

+
+

+
1 2

3
4

42 2

Answer: (t2−2e−3t + 2sin2t)u(t)

Example 3.9

Obtain h(t) given that

	
H s

s s
( )

( )( )
=

+ +
4

1 3

Solution
In the previous example, the partial fraction was provided. Here we determine the 
partial fraction. We let

	

H s
s s

A
s

B
s

( )
( )( )

=
+ +

=
+

+
+

4
1 3 1 3

	 (3.9.1)

where A and B are constants. The constants can be determined in two ways:

Method 1: Residue method

	

A s H s
s

B s H s
s

s
s

s
s

= + =
+

= =

= + =
+

=-
=-

=-
=-

( ) ( )
( ) ( )

( ) ( )
( )

1
4

3
4
2

2

3
4

1

1
1

3
33

4
2

2=
-

= -
( )

Method 2: Algebraic method
Multiplying both sides of Equation 3.9.1 by (s + 1)(s + 3) and equating the numera-
tor, we get

	 4 3 1= + + +( ) ( )A s B s

Equating the coefficients of like powers of s,

constant: 4 = 3A + B
s A B B A: 0 = + = -
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Solving these gives A = 2, B = −2
Thus,

	
H s

s s s s
( )

( )( )
=

+ +
=

+
-

+
4

1 3
2

1
2

3

By taking the inverse transform of each term, we obtain

	
h t e e u tt t( ) ( )= -( )- -2 2 3

Practice Problem 3.9  Find x(t) if

	
X s

s
s s s

( )
( )( )( )

=
+ + +

10
1 2 3

Answer: x(t) = (−5e−t + 20e−2t−15e−3t)u(t)

Example 3.10

Determine x(t) given that

	
X s

s s
s s

( )
( )( )

=
+ +

+ +
2 4 1

1 2

2

3

Solution

The previous example is on simple roots, while this example is on repeated roots. Let

	

X s
s s

s s
A

s
B

s
C

s
D

s
( )

( )( ) ( ) ( )
=

+ +
+ +

=
+

+
+

+
+

+
+

2 4 1
1 2 1 2 2 2

2

3 2 3
	 (3.10.1)

We can determine the constants A, B, C, and D in two ways:

Method 1: Residue method

	 A F s s s= + =
- +

- +
= -=-( )( )1

2 4 1
1 2

11

	 D F s s s= + =
- +

- +
= -=-( )( )2

8 8 1
2 1

13
2

	

C
d
ds

s X s
d
ds

s s
s

s

s s

= +éë ùû =
+ +
+

é

ë
ê

ù

û
ú

=
+

=- =-

( ) ( )
( )

( )(

2
2 4 1

1

1 4

3

2

2

2

ss s s
s

s s
s

s s

+ - + + ´
+

=
+ +
+

=
- +

=

=- =-

4 2 4 1 1
1

2 4 3
1

8 8 3
1

3

2

2
2

2

2

2

) ( )
( ) ( )
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B
d
ds

s X s
d
ds

s s
s

s s

= +éë ùû =
+ +
+

é

ë
ê

ù

û
ú

=

=- =-

1
2

2
1
2

2 4 3
1

2

2
3

2

2

2

2

( ) ( )
( )

(( ) ( ) ( ) ( )
( ) ( )

s s s s s
s s

s s

+ + - + + ´ +
+

=
-
+

=
-

=- =-

1 4 4 2 4 3 2 1
2 1

2
2 1

2 2

4
2

3
2

22
2

1
-

=

Method 2: Algebraic method
Multiplying Equation 3.10.1 by (s + 1)(s + 2)3 and equating the numerator, we 
obtain

	 2 4 1 2 1 2 1 2 12 3 2s s A s B s s C s s D s+ + = + + + + + + + + +( ) ( )( ) ( )( ) ( )

or

	 2 4 1 6 12 8 5 8 4 3 2 12 3 2 3 2 2s s A s s s B s s s C s s D s+ + = + + + + + + + + + + + +( ) ( ) ( ) ( )

Equating coefficients,

	

s A B B A

s A B C A C

s A B C D A C D

3

2

0

2 6 5 2

4 12 8 3 4 4 3

:

:

:

= + ® = -

= + + ® = +

= + + + ® = + +

Connstant : 1 8 4 2 1 4 2= + + + ® = + +A B C D A C D

Solving these simultaneously gives A =− 1, B = 1, C = 3, D = −1 so that Equation 
3.10.1 becomes

	
X s

s s s
( )

( ) ( )
=

-
+

+
+

+
+

-
+

1 1
2

3
2

1
22 3s 1

By taking the inverse transform of each term, we obtain

	
x e e te

t
e u tt t t t( ) ( )t = - + + -

æ

è
ç

ö

ø
÷

- - - -2 2
2

23
2

Practice Problem 3.10  Obtain y(t) if

	
Y s

s s
( )

( ) ( )
=

+ +
12

2 42

Answer: (3e−4t−3e−2t + 6te−2t)u(t)



134 Signals and Systems: A Primer with MATLAB®

Example 3.11

Find the inverse transform of

	
G s

s
s s s

( )
( )( )

=
+

+ + +
1

3 2 52

Solution
G(s) has a pair of complex poles at s2 + 2s + 5 = 0 or s = −2 ± j2. We let

	

G s
s

s s s
A

s
Bs C

s s

A G s s
s

( )
( )( )

( )( )

=
+

+ + +
=

+
+

+
+ +

= + =
-

=-

1
2 2 5 2 2 5

2
1

5

2 2

2

ss A s s B s s C s+ = + + + + + +1 2 5 2 22 2( ) ( ) ( )

Equating coefficients:

	

s A B B A

s A B C C C

s A C

2

1

0

0
1
5

1 2 2 0 1

1 5 2 1 2 1

:

:

:

= + ® = - =

= + + = + ® =

= + = - + =

	 G s
s

s
s s

s
s

( )
( )

( )
( )

=
-

+
+

× +
+ +

=
-

+
+

+
+ +

+
1 5

2
1 5 1

1 2
1 5

2
1 5 1

1 2
4

2 2 2 2

/ / / / /55
1 22 2( )s + +

	 g t e e t e t u tt t t( ) ( . . cos( ) . sin( )) ( )= - + +- - -0 2 0 2 2 0 4 22

Practice Problem 3.11  Find v(t) given that

	
V s

s
s s s

( )
( )

=
+

+ +
2 26

4 132

Answer: v t e t e t u tt t( ) cos sin ( ).= - -æ
è
ç

ö
ø
÷

- -2 2 3
2
3

32 2

Example 3.12

Consider the rectangular pulse or gate function x(t) = u(t) − u(t − 2). Obtain y(t) = 
x(t)*x(t), that is, the convolution of the rectangular pulse with itself.

Solution

The Laplace transform of x(t) is

	
X s

s
e

s

s

( ) = -
-1 2
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Using the convolution property,

	
Y s X s X s X s

s
e es s( ) ( ) ( ) ( )= = = - +( )- -2

2
2 41

1 2

Taking the inverse Laplace transform of each term,

	

y t x t x t tu t t t u t

r t r t r t

( ) ( ) * ( ) ( ) ( ) ( ) ( )

( ) ( ) (

= = - - + - -

= - - + -

2 2 4 4

2 2 4))

which is a triangular pulse, as expected.

Practice Problem 3.12  Given the unit ramp function r = tu(t) and the gate func-
tion g(t) = u(t) − u(t − 1), use the convolution property to find y(t) = r(t)*g(t).

Answer: y(t) = 0.5t2u(t)−0.5(t−1)2u(t−1)

Example 3.13

Determine the inverse Laplace transform of

	
X s

se e
s s s

s s

( )
( )

=
+

+ +

- -2 3

2 5 4

Solution
Let

	
X s X s e X s es s( ) ( ) ( )= +- -

1
2

2
3 	 (3.13.1)

where

	

X s
s

s s s s s
1 2 5 4

1
1 4

( )
( ) ( )( )

=
+ +

=
+ +

	 (3.13.2)

	

X s
s s s s s s

2 2

1
5 4

1
1 4

( )
( ) ( )( )

=
+ +

=
+ +

	 (3.13.3)

We now use partial fractions to obtain x1(t) and x2(t) from X1(s) and X2(s), respec-
tively. Let

	 X s
s s

A
s

B
s

1
1

1 4 1 4
( )

( )( )
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+ +
=

+
+

+

where

	

A
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B
s
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s

=
+

=
- +

=

=
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=
- +

= -
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1
4

1
1 4

1
3

1
1

1
4 1

1
3
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4
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Hence,

	
X s

s s
1

1
3

1
1

1
4

( ) =
+

-
+

é
ëê

ù
ûú

Taking the inverse of each term gives

	

x t e e u tt t
1

41
3

( ) ( )= -( )- - 	 (3.13.4)

Similarly,

	
X s

s s s
C
s

D
s

E
s

2
1

1 4 1 4
( )

( )( )
=

+ +
= +

+
+

+

where

	

C
s s

D
s s

E
s

s

s

=
+ +

= =

=
+

=
-

= -

=

=

=-

1
1 4

1
1 4

1
4

1
4

1
1 3

1
3

1

0

1

( )( ) ( )( )

( ) ( )( )

(ss s+
=

- -
=

=-1
1

4 3
1

124) ( )( )

Thus,

	
X s

s s s s s s
2

1
1 4

1 4 1 3
1

1 2
4

( )
( )( )

=
+ +

= -
+

+
+

/ / /1

From this, we obtain

	

x t e e u tt t
2

41
4

1
3

1
12

( ) ( )= - +é
ëê

ù
ûú

- - 	 (3.13.5)

From Equation 3.13.1,

	
x t x t u t x t u t( ) ( ) ( ) ( ) ( )= - - + - -1 22 2 3 3 	 (3.13.6)

Substituting Equations 3.13.4 and 3.13.5 into Equation 3.13.6 finally gives

	
x t e e u t e et t t t( ) ( )( ) ( ) ( ) ( )= -( ) - + - +é

ë
- - - - - - - -1

3
2

1
4

1
3

1
12

2 4 2 3 4 3
êê

ù
ûú

-u t( )3
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Practice Problem 3.13  Determine the inverse of

	
Y s

se
s s

s

( )
( )( )

=
-

+ +

-1
1 2

4

Answer: (e−t−e−2t)u(t) + (e−(t−4)−2e−2(t−4))u(t−4).

Example 3.14

Obtain g(t) given that

	
G s

s s
s s

( ) =
+ +
+ +

3 2

2

5 10
3 2

Solution

The degree of the numerator polynomial is greater than the degree of the denomi-
nator. In this case, the fraction is a proper one. The numerator is divided by the 
denominator by long division. We use long division until the remainder is one 
degree less than the denominator polynomial.

	

)s s s s s

s s s

s

s s

s
s

2 3 2

3 2

2

2

3 2 5 0 10
3 2

2

2 2 10
6 4

8 6

+ + + + +
+ +

+

- +
+ +

- +
2s

Thus,

	
G s s

s
s s

( ) = + +
- +
+ +

2
8 6

3 22

Let G(s) = s + 2 + Y(s), where Y s
s

s s
( ) =

- +
+ +
8 6

3 22

Let Y s
s

s s
A

s
B

s
( )

( )( )
=

- +
+ +

=
+

+
+

8 6
1 2 1 2

where

	

A
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s

B
s

s

s

s

=
- +

+
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+
- +

=

=
- +

+
=

+
- +

= -

=-

=-

8 6
2

8 6
1 2

14

8 6
1

16 6
2 1

22

1

2

	
Y s

s s
( ) =

+
-

+
14

1
22

2
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Thus,

	
G s s

s s
( ) = + +

+
-

+
2

14
1

22
2

Taking the inverse of each term gives

	
g t

d
dt

t t e e u tt t( ) ( ) ( ) ( )= + + -( )- -d d2 14 22 2

Practice Problem 3.14  Find y(t) given that

	
Y s

s s
s s

( )
( )

( )( )
=

+
- +

1
1 2

Answer: y t t e e u tt t( ) ( ) ( )= + -( )-d
2
3

2

3.5  TRANSFER FUNCTION

Now that we have mastered finding Laplace transform and its inverse, we begin the 
application of the Laplace transform to the study of continuous-time systems. We 
begin with the concept of transfer function.

We know from Chapter 2 that the output y(t) of a continuous-time system is the 
convolution of the input x(t) and the impulse response h(t), that is,

	 y t x t h t( ) ( )* ( )= 	 (3.83)

By applying the convolution property, we obtain

	 Y s X s H s( ) ( ) ( )=

or

	

H s
Y s

X s
( )

( )
( )

= 	 (3.84)

The Laplace H(s) (which is the Laplace transform of h(t)) is known as the trans-
fer function or system function of the system. The transfer function of a system 
describes how the output behaves with respect to the input.

The transfer function H(s) is defined as the ratio of the output response Y(s) to 
the input excitation X(s), assuming all initial conditions are zero.

Figure 3.7 shows the relationship between the impulse response h(t) and transfer 
function H(s). Given the system transfer function, we can perform extensive system 
analysis and design without having to apply specific signals to the systems.
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A linear system is often specified in terms of some block diagram. Here we con-
sider three types of interconnections.

Consider a parallel interconnection of two systems with transfer function H1(s) 
and H1(s) with single-input X(s) and single-output Y(s), as shown in Figure 3.8.

	
Y s H s H s X s( ) ( ) ( ) ( )= +éë ùû1 2 	 (3.85)

or

	
H s

Y s

X s
H s H s( )

( )
( )

( ) ( )= = +1 2 	 (3.86)

where H(s) is the transfer function for the overall system.
We next consider a series interconnection (or cascade connection) of two systems 

with transfer function H1(s) and H1(s) with single-input X(s) and single-output Y(s), 
as shown in Figure 3.9.

	 Y s H s H s X s( ) ( ) ( ) ( )= 1 2

or

	
H s

Y s

X s
H s H s( )

( )
( )

( ) ( )= = 1 2 	 (3.87)

where H(s) is the transfer function for the overall system.

x(t) X(s)
H(s) Y(s)= X(s)H(s)h(t) y(t)= x(t)*h(t)

FIGURE 3.7  Impulse response h(t) and transfer function H(s).

H1(s)

H2(s)

X(s) Y(s)

+

+

FIGURE 3.8  Parallel interconnection of two systems.

X(s) Y(s)H1(s) H2(s)

FIGURE 3.9  Series interconnection of two systems.
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Finally, we consider the feedback configuration in Figure 3.10. In this case, the 
output is feedback to the input. Negative feedback is common in practice because 
positive feedback can cause system instability. From Figure 3.10,

	 Y s G s U s( ) ( ) ( )= 	 (3.88)

But

	 U s X s F s Y s( ) ( ) ( ) ( )= - 	 (3.89)

Substituting Equation 3.89 into Equation 3.88 gives

	 Y s G s X s F s Y s( ) ( )( ( ) ( ) ( ))= -

or

	 Y s G s F s Y s G s X s( ) ( ) ( ) ( ) ( ) ( )+ = 	 (3.90)

Dividing both sides by X(s) gives the transfer function for the overall system as

	
H s

G s

F s G s
( )

( )
( ) ( )

=
+1

	 (3.91)

There are two special cases of this. First, if the subtractor in Figure 3.10 is an adder 
instead, then Equation 3.91 becomes

	
H s

G s

F s G s
( )

( )
( ) ( )

=
-1

	 (3.92)

Second, for unity feedback F(s) = 1, and Equation 3.91 becomes

	
H s

Y s

X s

G s

G s
( )

( )
( )

( )
( )

= =
+1

	 (3.93)

X(s)
Y(s)

U(s)
G(s)

F(s)

+

–

FIGURE 3.10  Feedback interconnection of systems.
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Example 3.15

The output of a linear system is y(t) = e−tcos4t u(t) when the input is x(t) = 10e−tu(t). 
Find the transfer function of the system.

Solution

If x(t) = e−tu(t) and y(t) = 10e−tcos4t u(t), then

	 X s
s

Y s
s

s
( ) ( )

( )
( )

=
+

=
+

+ +
1

1
10 1

1 42 2and

Hence,

	
H s

Y s
X s

s
s

s s
s s

( )
( )
( )

( )
( )

( )
= =

+
+ +

=
+ +

+ +
10 1

1 16
10 2 1

2 17

2

2

2

2

To find h(t), which is the inverse Laplace transform of H(s), we write H(s) as

	
H s

s s
( ) = -

+ +
10 40

4
2 172

Taking the Laplace inverse of each and using Table 3.2, we obtain

	 h t t e t u tt( ) ( ) sin ( )= - -10 40 4d  

Practice Problem 3.15  The transfer function of a linear system is

	
H s

s
s

( ) =
+
2

6

Find the output y(t) due to the input e−3tu(t) and its impulse response.

Answers: (−2e−3t + 4e−6t)u(t),  2δ(t)−12e−6tu(t)

Example 3.16

Find the transfer function for the feedback system shown in Figure 3.11.

Solution

We apply Equation 3.87 to obtain

	

E GG E

Y G E

2 1 2 1

3 3

=

=

Applying Equation 3.85,

	

E X F Y

E E FY

1 2

3 2 1

= -

= -
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If we eliminate E1, E2, and E3, we get

	

Y
G

GG X F Y HY
3

1 2 2 1= -[ ] -

Rearranging things leads to the transfer function:

	
H s

Y s
X s

G s G s G s
F s G s F s G s G s G

( )
( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

= =
+ +

1 2 3

1 3 2 1 21 33( )s

Practice Problem 3.16  Obtain the overall transfer function for the feedback 
system shown in Figure 3.12.

Answer: H s
s

s s s
( ) =

+ + +
2

2 3 33 2

X(s)
Y(s)

E1(s) E2(s) E3(s)G1(s) G2(s) G3(s)

F1(s)

F2(s)

+
+ +

–––

FIGURE 3.11  For Example 3.16.

X(s)
Y(s)

1/s

1/s

1/(s + 2) 2/(s + 2)+ +
+

– – –

FIGURE 3.12  For Practice Problem 3.16.
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3.6  APPLICATIONS

Besides applying Laplace transform to determine the transfer function of a system, 
Laplace transform finds applications in many areas such as circuit analysis, control 
systems, communication systems, speech control, and radar systems. In this section, 
we will apply Laplace transform to three areas: integro-differential equations, circuit 
analysis, and control systems.

3.6.1 I ntegro-Differential Equations

We use the Laplace transform in solving linear integro-differential equations 
with constant coefficients. This basically involves employing the differentiation and 
integration properties of Laplace transform to the terms in the integro-differential 
equation. Initial conditions are automatically incorporated. We solve the resulting 
algebraic equation in the s-domain. Using the inverse Laplace transfer, we convert 
the solution back to the time domain. We illustrate the process with the following 
examples:

Example 3.17

Consider the system characterized by

	

d y
dt

dy
dt

y e u tt
2

2 3 4+ - = - ( )

Use the Laplace transform to solve the differential equation subject to

	
y

dy
dt

( ) ,
( )

.0 1
0

0= =

Solution

Take the Laplace transform of each term:

	
s Y s sy y sY s y Y s

s
2 0 0 3 0 4

1
1

( ) ( ) ( ) ( ) ( ) ( )- - ¢éë ùû + -éë ùû - =
+

We substitute the initial conditions

	

s Y s s sY s Y s
s

s s Y s s
s

s s

2

2
2

0 3 3 4
1

1

3 4 3
1

1
4

( ) ( ) ( )

( )

- - + - - =
+

+ -( ) = + +
+

=
+ ++

+

=
+ +

+ - +
=

+ +
- + +

4
1

4 4
3 4 1

4 4
1 1 4

2

2

2

s

Y s
s s

s s s
s s

s s s
( )

( )( ) ( )( )( )
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Using partial fractions, we let

	
Y s

A
s

B
s

C
s

( )
( ) ( ) ( )

=
-

+
+

+
+1 1 4

where

	

A s Y s

B s Y s

s

s

= - =
+ +

=

= + =
- +
-

=
-

=

=-

( ) ( )
( )

( ) ( )
( )( )

1
1 4 4

2 5
9
5

1
1 4 4

2 3
1

1

1 66

4
16 16 4

5 3
4

154
C s Y s

s
= + =

- +
- -

=
=-

( ) ( )
( )( )

Thus,

	
Y s

s s s
( )

( ) ( ) ( )
=

-
-

+
+

+
9 5

1
1 6

1
4 15

4
/ / /

Taking the inverse Laplace transform of each term,

	
y t e e e u tt t t( ) ( )= - +æ

è
ç

ö
ø
÷

- -9
5

1
6

4
15

4

Practice Problem 3.17  A casual LTI system is described by

	 ¢¢ + ¢ + =y t y t y t x t( ) ( ) ( ) ( )2

For system input x(t) = 2u(t), find the output y(t). Assume zero initial conditions.

Answer: y(t) = (1−2e−t + e−2t)u(t)

Example 3.18

Solve the integro-differential equation

	

dv
dt

v v d u t
t

+ + =ò2 5 4
0

( ) ( )l l

with v(0) = −1 and determine v(t) for t > 0.

Solution

Take the Laplace transform of each term of the integro-differential equation.
We take the Laplace transform of each term:

	

sV s v V s
s

V s
s

sV s V s
s

V s
s

V s

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

-[ ] + + =

+[ ] + + = ®

0 2
5 4

1 2
5 4

==
-

+ +
4

2 52

s
s s
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V s

s
s

s
s s

( )
( )

( )
( )

( ) ( )
=

- + +
+ +

=
- +
+ +

+
+ +

1 5
1 2

1
1 2

5
2

2
1 22 2 2 2 2 2

Taking the inverse of each term leads to

	 v t e t e t u tt t( ) ( cos . sin ) ( )= - +- -2 2 5 2

Practice Problem 3.18  Use Laplace transform to solve for x(t) in

	

x t t e x dt

t

( ) cos ( )= + -ò l l l
0

Answer: x t e t t tt( ) cos sin , .= + + >
1
2

1
2

1
2

0

3.6.2  Circuit Analysis

The Laplace transform is a powerful tool in analyzing electric circuits. The use of 
Laplace transform in circuit analysis facilitates the use of various signal sources such 
as impulse, step, ramp, exponential, and sinusoidal. Applying Laplace transform to 
analyze circuits usually involves three steps:

	 1.	Laplace transform the circuit from the time-domain to the frequency 
domain (or s-domain).

	 2.	The circuit in s-domain is solved using circuit analysis techniques (such 
as voltage division, current division, nodal analysis, mesh analysis, 
source transformation, and superposition) and we obtain the desired 
quantity X(s).

	 3.	Obtain the inverse Laplace transform of X(s) to get the desired solution x(t) 
in the time domain.

The three steps are illustrated in Figure 3.13. Steps 2 and 3 are familiar. Only the first 
step is new and will be discussed here. We transform a circuit in the time-domain to 
frequency or s-domain by Laplace transforming each element of the circuit.

For a resistor, the voltage–current relationship in the time-domain is

	 v t Ri t( ) ( )= 	 (3.94)

Laplace transforming this gives

	 V s RI s( ) ( )= 	 (3.95)
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For the inductor,

	
v t L

di

dt
( ) = 	 (3.96)

Laplace transforming both sides yields

	 V s L sI s i sLI s Li( ) ( ) ( ) ( ) ( )= -éë ùû = -- -0 0

or

	
I s

sL
V s

i

s
( ) ( )

( )= +
-1 0

	 (3.97)

For the capacitor,

	
i t C

dv t

dt
( )

( )= 	 (3.98)

This transforms into the s-domain as

	 I s C sV s v sCV s Cv( ) ( ) ( ) ( ) ( )= -éë ùû = -- -0 0 0

or

	
V s

sC
I s

v

s
( ) ( )

( )= +
-1 0

	 (3.99)

Circuit in
time-domain

Circuit in
s-domain

Algebra Solution in
s-domain

Solution in
time-domain

Inverse
Laplace

transform
(step 3)

(step 2)

Laplace
transform

(step 1)

FIGURE 3.13  The three steps involved in analyzing a circuit with Laplace transformation.
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Notice in Equations 3.97 and 3.99 that the initial conditions are incorporated in the 
transformation process. This is one of the key advantages of using Laplace transform 
in circuit analysis. Another advantage is that a complete response (natural and steady 
state) of a network is obtained at once.

Assuming zero initial conditions for the inductor and the capacitor, the previous 
equations reduce to:

	 Resistor : ( ) ( )V s I s R= 	 (3.100)

	 Inductor : ( ) ( )V s sLI s= 	 (3.101)

	
Capacitor : ( ) ( )V s

sC
I s= 1

	 (3.102)

Example 3.19

Find vo(t) in the circuit in Figure 3.14.

Solution

We first transform the circuit from the time-domain to the s-domain.

	

2
2

1

1
0 2

5

u t
s

sL s

sC s s

( )

.

Þ

Þ =

Þ = =

H

0.2 F
1

Hence the frequency-domain equivalent circuit is in Figure 3.15. Using current 
division,

	

I
s

s s s s s s

V I
s s s

A
s

Bs C
s

o

o o

=
+ +

´ =
+ +

´

= =
+ +

= +
+

+

5
5 4

2 5
4 5

2

4
40
4 5

2

2 2

/
/

( ) 44 5s +

2u(t) A 0.2 F 4 Ω νo

1 H

+

–

FIGURE 3.14  For Example 3.19.
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Equating the denominators,

	 40 4 52 2= + + + +A s s Bs Cs( )

Equating coefficients:

	

Constant:

:

:

40 5 8

0 4 4 32

0 8

1

2

= ® =

= + ® = - = -

= + ® = - = -

A A

s A C C A

s A B B A

	

V
s

s
s

s
s

s s

o = -
+

+ +

= -
+

+ +
-

+ +

8 8 32
2 1

8 8 2
2 1

16
2 1

2

2 2

( )

( )
( ) ( )

Taking the inverse Laplace transform of each term, we obtain

	
v t e t e t u to

t t( ) cos sin ( )= - -( )- -8 8 82 2

Practice Problem 3.19  Using Laplace transformation, find vo(t) in the circuit in 
Figure 3.16.

Answer: vo(t) = 3.2(e−t−e−6t)u(t)

2/s 5/s 4

s

Vo

Io
+

–

FIGURE 3.15  s-Domain circuit for Example 3.19.

4e–t u(t) V +

+

–

–

1 Ω

2 Ω νo0.25 F

FIGURE 3.16  For Practice Problem 3.19.
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Example 3.20

For the circuit in Figure 3.17, find H(s) = Vo(s)/Vs(s). Assume zero initial conditions.

Solution

Transform the circuit to s-domain as shown in Figure 3.18. Let

	
Z

s
s

s s
s s

s
s s

= + =
+

+ +
=

+
+ +

1
2

1 2
1 2

2
2 12� ( )

( ) ( )
( )

/
/

Using voltage division,

	

V
Z

Z
V

V
s

V
s

Z
Z

V

s

o s

1

1

1

2
2

2
2 1

=
+

=
+

=
+ +

	

H s
V
V s

s
s s
s

s s

H s
s

s s

o

s

( )

( )
( )

= =
+

´

+
+ +
+

+ +
+

=
+

+ +

2
2

2
2 1
2

2 1
1
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3 3

2

2

2

1 Ω 1 H

1 F

+

+

–
–

2 Ωvovs
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is

FIGURE 3.17  For Example 3.20 and Practice Problem 3.20.

Vs Vo

V1

2

1 s

1/s

+

+

–
–

FIGURE 3.18  For Example 3.20.
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Practice Problem 3.20  For the circuit in Figure 3.17, obtain H(s) = Io(s)/Is(s). 
Assume zero initial conditions.

Answer: H s
s s

( ) =
+ +

1
2 12

3.6.3  Control Systems

A major application of Laplace transform is found in the study of control systems. 
An important consideration of control systems is their stability. In order for a control 
system to be useful, it must be stable. We examine the bounded-input bounded-
output (BIBO) stability of systems.

A system is BIBO stable when the output remains bounded for all time for 
every bounded input.

We can study the stability of a system either through its impulse response h(t) or 
through its transfer function H(s). An LTI system is BIBO stable if and only if its 
impulse response h(t) is absolutely integrable, that is,

	

| ( ) |h t dt < ¥
-¥

¥

ò 	 (3.103)

This condition is satisfied if the impulse response decays exponentially with increase 
in time.

We can determine whether a system is BIBO stable if its transfer function meets 
some conditions. The transfer function can be written as

	
H s

N s

D s

N s

s p s p s pn

( )
( )
( )

( )
( )( ) ( )

= =
+ + +1 2 �

	 (3.104)

H(s) must meet two requirements for the system to be stable. First, the numerator 
degree of H(s) must not be larger than the denominator degree; otherwise, long divi-
sion would produce

	
H s k s k s k s k

R s

D s
n

n
n

n( )
( )
( )

= + + + + +-
-

1
1

1 0� 	 (3.105)

where the degree of R(s), the remainder of the long division, is less than the degree of 
D(s). The inverse of H(s) in Equation 3.105 does not meet the condition in Equation 
3.103. Second, all the poles of the transfer function must be in the left half of the 
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s plane. This means that H(s) must not have poles in the right half of the s plane. Each 
pole must satisfy p = − α ± jω, where α > 0, that is, the real part of the pole must be 
negative.

A system is BIBO stable if and only if‑ all the poles of its transfer function 
H(s) lie in the left half of the s plane.

The system is considered unstable if one or more of its poles appear in the right 
half s plane. If the transfer function has poles on the imaginary axis (i.e., with zero 
real parts), the system is said to be marginally stable.

Example 3.21

Check the stability of a system with transfer function

	
H s

s s
s s s

( ) =
+ -

+ + +

2

3 2

10
3 4 2

Solution

H(s) can be expressed in terms of its numerator N(s) and denominator D(s).

	
H s

N s
D s

s s
s s s

( )
( )
( )

= =
+ -

+ + +

2

3 2

10
3 4 2

To determine the poles, we are only interested in the roots of D(s).

	 D s s s s s s j s j( ) ( )( )( )= + + + = + + - + +3 23 4 2 1 1 1

The roots of D(s) = 0 or the poles of H(s) are

	 p p j p j1 2 31 1 1= - = - + = - -, ,

All the three poles lie in the left half of the s plane and we conclude that the system 
is stable.

Practice Problem 3.21  A system has its transfer function as

	 H s
s

s s s
( ) =

+
+ + +

6
2 83 2

Check whether it is stable.

Answer: Unstable; it has two poles in the right half of the s plane.
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3.7  COMPUTING WITH MATLAB®

MATLAB is a powerful tool that can be used to do most of what we cover in 
this chapter. The impulse, step, ramp, sinusoidal, and exponential responses of 
continuous-time systems can be examined using MATLAB. In this section, we will 
examine how MATLAB can be used to do the following:

•	 Find Laplace transform: MATLAB has a Laplace transform command 
X = laplace (x). If the expression produced by the command is com-
plicated, we can use a MATLAB command simplify (x) to reduce the 
complexity.

•	 Find inverse Laplace transform: This can be done in two ways. We may 
use the command ilaplace to invert X(s). We may also use the command 
residue, which will produce a vector consisting of the residues of X(s). We 
then apply Table 3.2 to find x(t).

•	 Find the roots of a polynomial: By using the command roots, MATLAB 
can be used to find the roots a polynomial or the zeros, and poles of a trans-
fer function.

•	 Find the time response: MATLAB can be used to find the impulse response 
of a system by using the command impulse. We can also find the step 
response of the system using the command step. For finding ramp response 
or any other time response, we can use the command lsim.

•	 Find the frequency response: The command bode produces Bode plots 
(both magnitude and phase) of a given transfer function H(s). The frequency 
range and the number of points are automatically selected.

We will illustrate these with examples. There are many other commands (such as 
conv, deconv, factor, pretty, lsim, freqs, etc.), which are related to what we cover in 
this chapter; they can be examined by typing help control.

Example 3.22

Use MATLAB to find the Laplace transform of

	 x t t e t( ) ( )= + -2 3d

Solution

We recall that the commands dirac(t) and heaviside(t) are used to represent the 
unit impulse δ(t) and unit step u(t), respectively. The MATLAB commands are:

syms x t
x = 2*dirac(t) + exp(-3*t);
X = laplace(x)

This produces the following result:

X =
1/(s+3) + 2
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From this, we obtain

	
X s

s
( ) = +

+
2

1
3

Practice Problem 3.22  Use MATLAB to obtain the Laplace transform of

	 x t u t e t( ) ( ) .= - - -1 2

Answer: X s
s

e
s

s( ) = -
+

-1 2
1

Example 3.23

Use MATLAB to find the inverse Laplace transform of

	
V s

s
s s s

( )
( )( )

=
+

+ +
10 4

1 2

2

2

Solution

The MATLAB code is as follows:

syms s v V
V =(10*s^2 +4)/( s*(s+1)*(s+2)^2 );
v = ilaplace(V)

This produces the following result:

v =
1-14*exp(-t)+(13+22*t)*exp(-2*t)

so that

	 v t e e te tt t t( ) ,= - + + >- - -1 14 13 22 02 2

Practice Problem 3.23  Use MATLAB to obtain g(t) if

	
G s

s s
s s s

( )
( ) ( )

=
+ +

+ +

3

2

2 6
1 3

Answer: (2 − 3.25e−t − 1.5te−t + 2.25e−t)u(t)
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Example 3.24

Use the residue command to find the Laplace inverse of

	
X s

s s s s
s s s s

( ) =
+ + + -

+ + +
4 20 16 10 12

5 8 4

5 4 3 2

4 3 2

Solution
This is an indirect way of finding the inverse Laplace transform. We specify the 
numerator (num) and the denominator (den) of the transfer function X(s). We find 
the residues of X(s) using the following code.

num = [4 20 16 10 0 −12]; % numerator coefficients in descending 
powers of s
den = [1 5 8 4 0]; % denominator coefficients in descending 
powers of s
[r,p,k] = residue(num,den); % call residue
r =
-15.0000
46.0000
2.0000
-3.0000
p =
-2.0000
-2.0000
-1.0000
0
k =
4 0

This produces a vector r that has the residues and a vector p that has the corre-
sponding poles.

Notice that pole −2 is repeated. Also, since the order of the numerator of X(s) is 
one greater than the order of the denominator of X(s), k contains two values. From 
r, p, and k, we can write X(s) as

	

X s s s
s s s s

s
s

( )
( ) [ ( )] ( )

= + +
-
- -

+
- -

+
- -

+
-
-

= -
+

+

4 0
15

2
46

2
2

1
3
0

4
15

2
4

0
2

66
2

2
1

3
2( )s s s+

+
+

-

Using Table 3.2, we obtain the inverse v(t) as

	 x t t e te e u t tt t t( ) ( ) ( ),= ¢ - + + - ³- - -4 15 46 2 3 02 2d

Practice Problem 3.24  Given that X s
s

s s
( )

( )( )
=

+ +
5
1 3

2

, use the residue command 

to find x(t).

Answer: 5δ(t)−22.5e−3t + 2.5e−t,  t ≥ 0
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Example 3.25

Use MATLAB to find the zeros and poles of

	
H s

s s
s s s

( ) =
+ +

+ +

2

3 2

3 1
4 3

Solution

We use the command roots to find the roots of the numerator to get the zeros, and 
denominator to get the poles.

num = [1 3 1];
den = [1 4 3 0];
z=roots(num);
p=roots(den);
This result is:
z =
-2.6180
-0.3820
p =
0
-3
-1

Practice Problem 3.25  Repeat Example 3.25 for H s
s s

s s s
( ) =

+ -
+ +

2

3 2

4 2
4 13

Answer: Zeros: −4.4495, 0.4495, poles: 0, −2 + 3j, −2 – 3j.

Example 3.26

Use MATLAB to plot the step response of a system whose transfer function is 

H s
s

s s
( )

( )( )
=

+
+ +

1
2 3

Solution

We first need to expand the denominator:

	
H s

s
s s

( ) =
+

+ +
1

5 62

By definition, the step response is the response when the input to the system is the 
unit step u(t). Using the MATLAB script below, we obtain the response as plotted 
in Figure 3.19.

num = [1 1];
den = [1 5 6];
t = 0: 0.1: 4;
y=step(num,den,t);
plot(t,y)

Practice Problem 3.26  Use MATLAB to plot the impulse response of a system 
whose transfer function is given in Example 3.26. Hint: Use impulse (num, den, t).

Answer: See Figure 3.20.
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Example 3.27

Use MATLAB to obtain the Bode plots for the transfer function

	
H s

s
s s

( ) =
+ +
100
12 202

Solution

The MATLAB script for the transfer is shown below, while the Bode plots are in 
Figure 3.21.

num = [100 0];
den = [1 12 20];
bode(num,den); %determines and draws Bode plots

0.25

0.2

0.15

0.1

0.05

0
0 0.5 1 1.6 2 2.5 3.53 4

FIGURE 3.19  For Example 3.26.
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1

0.8

0.6

0.4

0.2

0

–0.2
0 0.5 1 1.5 2 2.5 3.53 4

FIGURE 3.20  For Practice Problem 3.26.



157The Laplace Transform

Practice Problem 3.27  Repeat Example 3.27 for the transfer function

	
H s

s
s s

( ) =
+

+ +
4

5 82

Answer: See Figure 3.22.

3.8  SUMMARY

	 1.	The Laplace transform converts a signal in the time-domain to the frequency 
domain. Its unilateral form (used throughout this chapter) is defined as

	

L[ ( )] ( ) ( )x t X s x t e dtst= = ò
0-

¥

-

		  The values of s for which X(s) exists form the region of convergence.
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FIGURE 3.21  Magnitude and phase Bode plots for Example 3.27.
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	 2.	Laplace transform properties are provided in Table 3.1, while the Laplace 
transform of basic common functions are listed in Table 3.2.

	 3.	The inverse Laplace transform, L−1[X(s)], can be found by using partial frac-
tion expansions along with the Laplace transform pairs in Table 3.2. The 
partial fraction expansion of X(s) can be obtained when the poles of X(s) are 
simple, repeated, complex conjugates, or a combination of these.

	 4.	The transfer function H(s) of a system is the Laplace transform of the impulse 
response h(t). H(s) relates the output response Y(s) and an input excitation X(s), 
that is, H(s) = Y(s)/X(s), assuming all initial conditions are zero.

	 5.	There are several applications of the Laplace transform. Some include the 
solution of integro-differential equations, electric circuit analysis, and analysis 
of control systems.

	 6.	Using the Laplace transform to analyze a circuit involves converting each 
element from time-domain to s-domain, solving the problem using circuit 
techniques, and converting the result to time-domain using inverse Laplace 
transform.

	 7.	A system is considered stable if all the poles of the transfer function H(s) lie 
in the left half of the s plane. Values of s for which H(s) = 0 and H(s) = ∞ are, 
respectively, zeros and poles of H(s).

	 8.	MATLAB is a convenient tool for finding the Laplace transform of a signal 
or its inverse. It is also used in obtaining the time response and frequency 
response of systems.

REVIEW QUESTIONS

	 3.1	 A Laplace transform exists only in its region of convergence.
	 (a)	 True, (b) false
	 3.2	 If X(s) is the Laplace transform of x(t), the variable s is known as:
	 (a)	 Laplacian, (b) complex frequency, (c) transfer function, (d) zero, (e) pole
	 3.3	� The one-sided Laplace transform depends only on the value of the signal for 

t ≥ 0.
	 (a)	 True, (b) false
	 3.4	 The Laplace transform of t2u(t) is:

	 (a)	
2
s

 (b) 2
2s

 (c) 2
3s

 (d) e

s

s-2

	 3.5	 Let X s
s

s s s
( )

( )( )( )
= +

+ + +
4

1 2 3

		  The zero of X(s) is at
	 (a)	 −4, (b) −3, (c) −2, (d) −1
	 3.6	 For the function given the previous question, the poles of X(s) are at
	 (a)	 −4, (b) −3, (c) −2, (d) −1
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	 3.7	 Given

	
X s

s

s s
( )

( )( )
= +

+ +
3

1 2

		  the initial value of x(t) with transform is
	 (a)	 Nonexistent, (b) ∞, (c) 0, (d) 1, (e) 1/6

3.8	 Let X s
e

s

s

( ) =
+

-2

4
. The inverse Laplace transform x(t) is

	 (a)	 e−2(t−1)u(t−1), (b) e−4(t−2)u(t−2), (c) e−4tu(t−2), (d) e−(t−2)u(t−4)
3.9	 A network has the following transfer function:

	
H s

s

s s
( )

( )( )
= +

+ -
1

2 3

		  Is the network stable?
	 (a)	 Yes, (b) no
3.10	 The MATLAB command for finding zeros and poles of a transfer function is
	 (a)	 Laplace, (b) ilaplace, (c) roots, (d) step, (e) impulse

Answers: 3.1a, 3.2b, 3.3a, 3.4c, 3.5a, 3.6b,c,d, 3.7d, 3.8b, 3.9b, 3.10c.

PROBLEMS

Sections 3.2 and 3.3—Definition of the Laplace 
Transform and Properties of the Laplace Transform

	 3.1	 Find the Laplace transform of

	 (a)	 x t

t

t( )

,

,

,

=
< <

- < <
ì

í
ï

î
ï

10 0 1

5 1 2

0 otherwise

	 (b)	r(t) = t u(t).
	 3.2	 Find F(s) given that

	

f t

t t

t( )

,

,

,

=
< <
< <

æ

è

ç
ç
ç

2 0 1

2 1 2

0 otherwise

	 3.3	 Find the Laplace X(s) given that x(t) is
	 (a)	 2tu(t − 4)
	 (b)	5cost  δ(t−2)
	 (c)	 e−tu(t−τ)
	 (d)	sin 2t u(t − τ)
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3.4	 Find the Laplace transform of these signals:
	 (a)	 x1(t) = te2tu(t)
	 (b)	x2(t) = tcos4t
	 (c)	 x3(t) = δ(t + 2)
	 (d)	x4(t) = 5cos(2t + π/4)
	 (e)	 x5(t) = t2u(t−1)
3.5	 Determine the Laplace transform of
	 (a)	 x(t) = u(t) − u(t − 2)
	 (b)	y(t) = te−3tu(t)
3.6	 Show that

	 (a)	 L cos t u t
s

s s
2

2 2

2 2

2
4

( ) ( )
( )

w w
w

éë ùû = +
+

	 (b)	 L sin t u t
s s

2
2

2 2

2
4

( ) ( )
( )

w w
w

éë ùû =
+

3.7	 Find the Laplace transform of x(t) shown in Figure 3.23.
3.8	 Using the initial value theorem, find g(0) if

	 G s
s

s s s
( ) = +

+ + +
1

6 11 53 2

3.9	 Given that

	 F s
s s

s s s
( )

( ) ( )
= + +

+ +

2

2

10 6
1 2

		  evaluate f(0) and f(∞) if they exist.
3.10	 Using Laplace transform, find the convolution x(t)*y(t) for the following cases:
	 (a)	 x(t) = e−2tu(t), y(t) = tu(t)
	 (b)	x(t) = e−tu(t), y(t) = e−tu(t)
	 (c)	 x(t) = (sin t)u(t), y(t) = (cos t)u(t)

x(t)

2

1

0 1 2 t(s)

FIGURE 3.23  For Problem 3.7.
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Section 3.4—The Inverse Laplace Transform

3.11	 Obtain the inverse Laplace transform of the following functions:

	 (a)	 X s
s s

e s( ) = + -1 2

	 (b)	 Y s
s s

( ) =
- +
10
5 42

	 (c)	
s

s s

-
+ +

2
2 102

3.12	 Find the inverse Laplace transform of

	 (a)	 G s
s

s s s
( ) = +

+ +
2

4 33 2

	 (b)	 H s
e

s

s

( )
( )

=
+

-10
3 5

2

3

3.13	 Find the inverse Laplace transform for

	 (a)	 X s
s

s s
( ) = +

+ +
3 1

2 52

	 (b)	 Y s
s

s s
( ) = +

+ +
3 7

3 22

	 (c)	 Z s
s

s
( ) = -

-

2

2

8
4

	 (d)	 H s
s

( )
( )

=
+
12

2 2

3.14	 Find the inverse Laplace transform of the following functions:

	 (a)	 F s
s

s s s
( )

( )
( )

= +
+ +

20 2
6 252

	 (b)	 P s
s s

s s s
( )

( )( )( )
= + +

+ + +
6 36 20

1 2 3

2

3.15	 Find y(t) that corresponds to

	
Y s

e e se se

s

s s s s

( ) = - - -- - - -8 4 2 62 2 3

2

3.16	 Find the inverse Laplace transform of these functions:

	 (a)	 X s
s s

s
( ) = + +

+

2 2 2
1

	 (b)	 Y s
s s s

s s
( )

( )
= + + +

+

3 2

2

2 3 1
1
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3.17	 Find the inverse Laplace transform of

	 (a)	 H s
s

s s
( )

( )
= +

+
4
2

	 (b)	 G s
s s

s s s
( )

( )( )
= + +

+ + +

2

2

4 5
3 2 2

	 (c)	 F s
e

s

s

( ) =
+

-4

2

	 (d)	 D s
s

s s
( )

( )( )
=

+ +
10
1 42 2

3.18	 Let F s
s

s s
( )

( )
( )( )

= +
+ +
5 1

2 3

	 (a)	 Use the initial and final value theorems to find f(0) and f(∞).
	 (b)	Verify your answer in part (a) by finding f(t) using partial fractions.

Section 3.5— Transfer Function

3.19	 Consider a system for which

	

dy t

dt
y t

dx t

dt
x t

( )
( )

( )
( )+ = +5

		  Assuming that the system is causal, find the impulse response h(t).
3.20	� Obtain the impulse response of the system represented by the following 

equation:

	

d y t

dt

dy t

dt
y t x t

2

2 2
( ) ( )

( ) ( )+ + =

		  Assume zero initial conditions.
3.21	 A causal LTI system has the transfer function

	
H s

s

s s
( ) = +

+ +
2

2 52

		  Find the response y(t) due to the input x(t) = 2e−3tu(t).
3.22	 Find the transfer function of the system shown in Figure 3.24.
3.23	 Find the transfer function of the feedback system shown in Figure 3.25.
3.24	 Determine the transfer function of the system shown in Figure 3.26.
3.25	� For the system shown in Figure 3.27, obtain the transfer function H(s) = 

Y(s)/X(s).
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X(s) Y(s)

+

–

s

s + 2

s + 1

2

FIGURE 3.24  For Problem 3.22.

X(s)

=

F2(s)

F1(s)

G1(s) G2(s) G3(s)

+ +
+

FIGURE 3.27  For Problem 3.25.

X(s) Y(s)

+

–

1 1
s + a s + a

b

FIGURE 3.25  For Problem 3.23.

X(s) Y(s)

+

–

G1 G2

F2

F1

FIGURE 3.26  For Problem 3.24.
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3.26	� For each of the systems shown in Figure 3.28, use Laplace transform to find y(t).
3.27	� A manufacturing process is represented by the feedback control system shown 

in Figure 3.29.
	 (a)	 Obtain the system transfer function
	 (b)	Determine the system response y(t) when x(t) = u(t).
3.28	 Determine the transfer function for the system shown in Figure 3.30.

Section 3.6— Applications

3.29	 Solve the differential equation

	 ¢¢ + ¢ + = -y t y t y t e u tt( ) ( ) ( ) ( )7 12

		  subject to y(0) = −1, y′(0) = 2

X(s) Y(s)

+

–

H1(s) =

H2(s) = 0.25

2

s(s+1)

FIGURE 3.29  For Problem 3.27.

δ(t)

u(t)

δ(t)

e–2t u(t)

te–t u(t)

e–t u(t)

e–2t u(t)

(a)

(b)

4 y(t)

y(t)

+

+

+

+

+

FIGURE 3.28  For Problem 3.26.
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3.30	� Determine the complete response of the systems described by the following 
differential equation:

	 y t y t y t tu t y y( ) ( ) ( )( ) ( ) ( ) cos ( ), ( ) , ( )2 1 12 2 0 0 0 1+ + = = =- -

3.31	 Obtain the solution to this differential equation:

	 y t y t y t u t y y( ) ( ) ( )( ) ( ) ( ) ( ), ( ) ( )2 1 12 0 1 0+ + = = =- -

3.32	 A Butterworth high-pass filter with input x(t) and output y(t) is described by

	

d y t

dt

dy t

dt
y t

d x t

dt

2

2

2

21 41
( )

.
( )

( )
( )+ + =

		  Determine the impulse response.
3.33	 Using Laplace transform, solve the following differential equation for t > 0

	

d i

dt

di

dt
i e t

2

2
24 5 2+ + = -

		  subject to i(0) = 0, i′(0) = 2.
3.34	 Obtain the transfer function of the circuit in Figure 3.31.
3.35	 Consider the circuit shown in Figure 3.32. Find the transfer function H(s).
3.36	 Obtain the current io(t) in the circuit of Figure 3.33.
3.37	 Using nodal analysis, find vo(t) in the circuit of Figure 3.34.
3.38	 Obtain the impedance Z(s) of the network in Figure 3.35.
3.39	� Use Laplace transformation to determine the mesh currents I1(s) and I2(s) in 

Figure 3.36. Let vs(t) = 2e−t V.

X(s) Y(s)

+
+

+

–
H1(s)

H2(s)

H3(s)

FIGURE 3.30  For Problem 3.28.
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i(t) = y(t)

x(t)

R

R

L

+

–

C

FIGURE 3.31  For Problem 3.34.

0.5u(t) A 1 Ω 1 Ω

0.5 F
io (t)

FIGURE 3.33  For Problem 3.36.

1 Ω

1 Ω
y(t)

1 F

1 F

x(t) +

+

–

–

FIGURE 3.32  For Problem 3.35.
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3.40	 Investigate the stability of these systems:

	 (a)	 H s
s

s s
( ) = +

- -
2

5 62

	 (b)	 H s
s

s
( ) = +

+
2
92

	 (c)	 H s
s

s s
( ) = +

+ +

2

2

6
5 4

	 (d)	 H s
s

s s
( ) = +

+ +

3

2

10
5 6

Z(s)
1 F

1 H

1 Ω

1 Ω

2 Ω

FIGURE 3.35  For Problem 3.38.

vs

i1
i2

1 Ω

1 H 2 H

1 Ω

+

–

FIGURE 3.36  For Problem 3.39.

10u(t) V u(t) A

1 F νo (t)

1 H
+

+

–

–

FIGURE 3.34  For Problem 3.37.
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3.41	� Determine the stability of the systems represented by the following transfer 
functions:

	 (a)	 H s
s s

( )
( )

=
+
4

1

	 (b)	 H s
s

s s
( ) = -

+ +
10
5 62

	 (c)	 H s
s

s s
( ) = +

- +

2

2

1
6 25

3.42	� Given the impulse response h(t) of an LTI system, determine if the system is 
BIBO stable.

	 (a)	 h(t) = (t3 + 2t2−3t + 1)u(t)
	 (b)	h(t) = e−tsin4t,  t ≥ 0
	 (c)	 h(t) = δ(t) + 2u(t)
3.43	 An LTI system is described by

	

d y t

dt

dy t

dt
y t

dx t

dt
x t

2

2 2 2 3
( ) ( )

( )
( )

( )+ + = -

	 (a)	 Determine the transfer function of the system.
	 (b)	Obtain the impulse response of the system.

Section 3.7— Computing with MATLAB®

3.44	 Use MATLAB to find the Laplace transform of these functions for t > 0.
	 (a)	 t3 + t2 + 2t−4
	 (b)	t cos 3t
	 (c)	 e−tsin2t
3.45	 Use MATLAB to find the inverse Laplace transform of the following functions:

	 (a)	 1 1 2

s s
e s+ -

	 (b)	
2
1 3( )s +

	 (c)	 s s

s s

2

2

3 1
4 8

+ +
+ +

3.46	 Consider the function

	
H s

s s

s s s
( ) = + +

+ + +

2

3 2

6 10
7 11 5

		  Use the MATLAB residue function to obtain the inverse Laplace transform 
of H(s).
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3.47	 Use MATLAB to find the inverse Laplace transform

	
X s

e s e

s s s

s s

( ) = +
+ +

- -3 2 2

3 23 2

3.48	� Use MATLAB command residue to find the inverse Laplace transform of each 
of these functions:

	 (a)	 X s
s s

s s
( ) = + -

+ +
3 6 10

7 12

2

2

	 (b)	 Y s
s s

s s s
( ) = + +

+ + +

2

3 2

2 1
4 6 5

	 (c)	 Z s
s s s

s s s s
( ) = + + +

+ + +
2 12 10 1

16 8 2

3 2

5 4 3

3.49	 A linear system is represented by its transfer function

	
H s

s

s s
( )

( )( )
= +

+ +
2 5
2 3

		  Use MATLAB to determine and plot:
	 (a)	 The impulse response
	 (b)	The step response.
3.50	� Find the impulse response and the step response for each of the following 

systems:

	 (a)	 H s
s

s s
( ) = +

+ +
1

5 62

	 (b)	 H s
s

s s s
( ) =

+ + +
5

10 10 43 2

3.51	 Use MATLAB to find the zeros and poles of these functions:

	 (a)	
s

s

-
+ +

2
1 92( )

	 (b)	 s s

s s s

2

2

2 5
4 13

+ +
+ +( )

	 (c)	
s s

s s s

2

3 2

10 5
4 10 6
+ +

+ + +
3.52	� Use MATLAB to determine if the systems represented by the following trans-

fer functions are stable:

	 (a)	 H s
s s s

s s s s
( ) = + + +

+ + + +

3 2

4 3 2

12 3 10
2 20 25 15 12

	 (b)	 H s
s s s s

s s s s s
( ) = + - + +

+ + + + +

4 3 2

5 4 3 2

2 3 1
3 3 1

	 (c)	 H s
s s s s s

s s s s s s
( ) = + + + - -

+ + + + + +
4 15 25 19 14 20

8 32 64 50 24 30

5 4 3 2

6 5 4 3 2
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3.53	 Obtain the Bode plots for the following transfer functions using MATLAB:

	 (a)	 H s
s s

s s
( )

( )
( )( )

= +
+ +

10
20 50

	 (b)	 H s
s

s s s
( )

( )( . )
= +

+ + +
1

2 22 5 162
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4 Fourier Series

Imagination is more important than knowledge.

—Albert Einstein

HISTORICAL PROFILE

Jean Baptiste Joseph Fourier

Jean Baptiste Joseph Fourier (1768–1830), French mathematician, known also as an 
Egyptologist and administrator, was the first to present the series and transform that 
bear his name. He was the first to propose that the periodic waveforms could be 
represented by a sum of sinusoids. His major work, The Analytic Theory of Heat 
in 1822, stated the equations governing heat transfer in solids. Although Fourier’s 
results were not enthusiastically received by the scientific world, his work provided 
the impetus for later work on trigonometric series and the theory of functions of a 
real variable.

Fourier was born in France in 1768, the son of a tailor. Joseph’s mother died when 
he was nine years old and his father died the following year. Fourier first attended 
the local military school conducted by Benedictine monks. He showed proficiency in 
mathematics and later became a teacher in mathematics at the same school. In 1793, 
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he became involved in politics and joined the local Revolutionary Committee. Due 
to his political involvement, he narrowly escaped death twice. He died in his bed in 
Paris on May 16, 1830.

4.1  INTRODUCTION

This chapter is concerned with a means of analyzing systems with periodic exci-
tations. The notion of periodic functions was introduced in Chapter 1, where the 
importance of sinusoids (or cosinusoids) was emphasized. In this chapter, we intro-
duce Fourier series, a premier tool for analyzing periodic signals

Although the Fourier series has a long history involving many individuals, the 
Fourier series is named after Jean Baptiste Joseph Fourier (1768–1830), a French 
mathematician and physicist. In 1822, Fourier was the first to suggest that any 
periodic function can be represented as a sum of sinusoids. Such a representation 
provides a powerful tool for analyzing signals and systems. System responses to 
periodic signals are of practical interest because these signals are common.

Fourier analysis (Fourier series in this chapter and Fourier transform in the 
next chapter) plays a major role in system analysis for a number of reasons. First, 
Fourier analysis leads to the frequency spectrum of a continuous-time signal. The 
frequency spectrum displays the various sinusoidal components that make up the 
signal. Engineers think of signals in terms of their frequency spectra and of systems 
in terms of their frequency response. Second, Fourier analysis converts time-domain 
signals into frequency-domain representation that lends new insight into the nature 
and the properties of the signals and systems. For many purposes, the frequency-
domain representations are more convenient to analyze, synthesize, and process. 
Third, in the frequency domain linear systems are described by linear algebraic 
equations that can be easily solved, in contrast to the time-domain representation, 
where they are described by linear differential equations. It is for these reasons that 
Fourier analysis is used extensively today in science and engineering.

This chapter begins with the trigonometric Fourier series and how to determine 
the coefficients of the series. Then, we consider the complex exponential Fourier 
series. We will discuss some properties of Fourier series. We will cover circuit analy-
sis, filtering, and spectrum analyzers as engineering applications of Fourier series. 
We will finally see how we can use MATLAB® to plot line spectra.

4.2  TRIGONOMETRIC FOURIER SERIES

The Fourier series can be represented in three ways, the sine–cosine, amplitude–
phase, and complex exponential.

A periodic signal is one that repeats itself every T s. In other words, a continuous 
time signal x(t) satisfies

	 x t x t nT( ) ( )= + 	 (4.1)

where
n is an integer
T is the fundamental period of x(t)
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Any periodic function can be expressed as an infinite series consisting of sine or 
cosine functions. Thus, x(t) can be expressed as

	

x t a a t b t a t b t

a t b

( ) cos sin cos sin

cos

= + + + +

+ +

0 1 0 1 0 2 0 2 0

3 0 3

2 2

3

w w w w

w ssin3 0w t +� 	 (4.2)

This can be written as

	

x t
a

a n t b n tn n
n

( ) ( cos sin )= + +
=

¥å0
0 0

1dc
ac

w w
� �������������� ���������������

	 (4.3)

where

	
w p

0
2=
T

	 (4.4)

ω0 is known as the fundamental frequency (in rad/s). The coefficients as are called 
the Fourier cosine coefficients including a0, the constant term, which is in reality the 
0th cosine term, and bs are called the Fourier sine coefficients. The Fourier coef-
ficient a0 in the earlier equation is the constant or dc component of x(t). The Fourier 
coefficients an and bn (for n ≠ 0) are the amplitudes of the sinusoids in the ac com-
ponent of x(t).

The Fourier series of a periodic signal x(t) is a decomposition of x(t) into a dc 
component and an ac component that consists of an infinite series of harmonic 
sinusoids.

A periodic function x(t) can be expanded as a Fourier series only if it fulfills the 
Dirichlet conditions given as

	 1.	x(t) should be integrable over any period; that is,

	

| ( ) |x t dt
t

t To

< ¥
+

ò
0

	 2.	x(t) has only a finite number of maxima and minima over any period
	 3.	x(t) has only a finite number of discontinuities over any period

The process of determining the Fourier coefficients a0, an, and bn is called Fourier 
analysis. The coefficients can be determined as follows:

	

a
T

x t dt

T

0

0

1= ò ( )

	

(4.5)



174 Signals and Systems: A Primer with MATLAB®

	

a
T

x t n t dtn

T

= ò2
0

0

( )cos w
	

(4.6)

	

b
T

x t n t dtn

T

= ò2
0

0

( )sin w
	

(4.7)

The fact that sine and cosine functions are orthogonal over a period T leads to the 
following trigonometric integrals:

	

sin cosn t dt n t dt

T T

w w0

0

0

0

0= =ò ò 	 (4.8)

	

sin cosn t n t dt

T

w w0

0

0 0ò = 	 (4.9)

	

sin sin cos cos ,n t m t dt n t m t dt m n

T T

w w w w0

0

0 0

0

00ò ò= = ¹ 	 (4.10)

	

sin cos2
0

0

2
0

0
2

n t dt
T

n t dt

T T

w wò ò= = 	 (4.11)

These integrals will be used in finding the Fourier coefficients.
To find a0, integrate both sides of Equation 4.3 over one period.

	

x t dt a dt a n t dt b n t dt

T T

n

T

n

n( ) cos sin
0

0

0

0

01

0

0
ò ò òå= +

é

ë
ê
ê

ù

û
ú
ú

+
=

¥

w w
TT

n

a T

òå
é

ë
ê
ê

ù

û
ú
ú

= + +

=

¥

1

0 0 0

	

(4.12)

Using the identities in Equation 4.8, the two integrals involving the ac terms become 
zero. Therefore,

	 x t dt a T

T

( ) =ò 0

0
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or

	

a
T

x t dt

T

0

0

1= ò ( ) 	 (4.13)

To find an, multiply both sides of Equation 4.3 by cos mω0t and integrate over one 
period.

	

x t m t dt a m t dt a n t m t dt

T T T

n( )cos cos cos cosw w w w0

0

0 0

0 0

0 0ò ò ò ò= +
é

ë
ê
ê

ùù

û
ú
ú

+
é

ë
ê
ê

ù

û
ú
ú

= + +

=

¥

=

¥

å

òå

n

n

T

n

n

b n t m t dt

T
a

1

0 0

01

0
2

0

sin cosw w 	

(4.14)

The integral containing a0 and bn becomes zero according to Equations 4.8 and 4.9, 
respectively. The integral containing an will be zero except when m = n, in which 
case it is T/2 according to Equation 4.11. Thus,

	

x t m t dt a
T

m n

T

n( )cos ,w0

0
2ò = =

or

	

a
T

x t n t dtn

T

= ò2
0

0

( )cos w 	 (4.15)

To find bn, multiply both sides of Equation 4.3 by sin mω0t and integrate over one 
period.

	

x t m t dt a m t dt a n t m t dt

T T

n

T

( )sin sin cos sinw w w w0

0

0 0

0

0 0

0
ò ò ò= +

é

ë
ê
ê

ù

ûû
ú
ú

+
é

ë
ê
ê

ù

û
ú
ú

= + +

=

¥

=

¥

å

òå

n

n

T

n

n

b n t m t dt

T
b

1

0 0

01

0 0
2

sin sinw w 	

(4.16)
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The integral containing a0 and an becomes zero according to Equations 4.8 and 4.10, 
respectively. The integral containing bn will be zero except when m = n, in which 
case it is T/2 according to Equation 4.11. Thus,

	

x t n t dt b
T

m n

T

n( )sin ,w0

0
2ò = =

or

	

b
T

x t n t dtn

T

= ò2
0

0

( )sin w 	 (4.17)

Since x(t) is periodic the integration of Equation 4.5 over one full period from to to 
to + T or from –T/2 to T/2 instead of 0 to T gives the same results.

Equation 4.3 is the sine–cosine form of Fourier series. An alternative representa-
tion is the amplitude-phase (or polar) form:

	

x t a A n tn n

n

( ) cos( )= + +
=

¥

å0 0

1

w f 	 (4.18)

This combines the sine–cosine pair at frequency nω0 into a single sinusoid. We can 
apply the trigonometric identity

	 cos( ) cos cos sin sinA B A B A B+ = - 	 (4.19)

to the ac terms in Equation 4.18 to get

	

a A n t a A n t

A

n n

n

n n

n

n n

0 0

1

0 0

1

+ + = +

+ -

=

¥

=

¥

å åcos( ) ( cos )cos

( sin )

w f f w

f ssin n t
n

w0

1=

¥

å
	

(4.20)

When we equate the coefficients of the series expansions in Equations 4.3 and 4.20, 
we obtain

	 a A b An n n n n n= = -cos , sinf f 	 (4.21)

	

A a b
b

a
n n n n

n

n

= + = - -2 2 1, tanf 	 (4.22)
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These may also be related in a compact complex form as

	 A a jbn n n n< = -f 	 (4.23)

The frequency components of the signal x(t) can be displayed in terms of the ampli-
tude and phase spectra. The frequency spectrum of x(t) is the combination of both 
the amplitude and phase spectra.

Example 4.1

Given the periodic train of pulses shown in Figure 4.1, obtain Fourier coefficients 
ao, an, and bn. Plot the amplitude and phase spectra.

Solution

The signal can be expressed as

	
x t

t

t
( )

,

,
=

< <
< <

ì
í
î

10 0 1

0 1 5

With T = 5, ω0 = 2π/5 Using Equation 4.5,

	

a
T

x t dt dt dt
T

0

1

5

0

1

0

1 1
5

10 0
1
5

10 2= = +
é

ë

ê
ê

ù

û

ú
ú

= =òòò ( )

Next, we use Equation 4.6,

	

a
T

x t n t dt n t dt

n t
n

n

n o

T

o

o

o

= =

= =

òò2 2
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4 4

0

1
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1

( )cos cos

sin sin

w w

w
w

ww
w

o

on

x(t)

10

0 1 5 6–4–5

FIGURE 4.1  For Example 4.1.
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Similarly, using Equation 4.7 gives

	

b
T

x t n t dt n t dt

n t
n

n o

T

o

o

o
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= - =
-

òò2 2
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4 4
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w w
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The Fourier series expansion of the signal is

	
x t

n
n

n t
n

n
n to

o
o

o

o
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n

( )
sin

cos
cos

sin= + +
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ë
ê

ù

û
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è
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2 4
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Finally, we obtain the amplitude and phase spectra for the signal in Figure 4.1 by 
using

	
A a b

b
a

n n n n
n

n

= + = - -2 2 1, tanf

Applying these formulas for values of n = 1, 2, …, 8 produces the result in Table 4.1 
From the table, the amplitude and phase spectra are plotted as shown in Figure 4.2.

Practice Problem 4.1  Obtain the Fourier series expansion for the waveform 
shown in Figure 4.3.

Answer: y t
n

n t
n

n

( ) . sin= - +
=

=

¥

å0 5
6

1 p
p

odd

TABLE 4.1
For Example 4.1

n an bn An ϕn (Degrees) 

1 3.0273 3.0164 4.2735 −44.89

2 0.9355 5.2876 5.3697 −79.97

3 −0.6237 4.8584 4.8983 82.68

4 −0.7568 3.7541 3.8296 78.60

5 0 3.3634 3.3634 90

6 0.5046 3.8361 3.8691 −82.51

7 0.2673 4.3679 4.3861 −86.50

8 −0.2339 4.3219 4.3282 86.90
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(a)
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(b)
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0Ф
n
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–100
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n
8 6 7 8

FIGURE 4.2  For Example 4.1: (a) amplitude spectrum and (b) phase spectrum.

0 1 2

–2

3 t–1

1

y(t)

FIGURE 4.3  For Practice Problem 4.1.



180 Signals and Systems: A Primer with MATLAB®

Example 4.2

Find the Fourier series expansion of the backward sawtooth waveform of Figure 4.4.

Solution

	 g(t) = 5 − 2.5t, 0 < t < 2,

	 T = 2, ω0 = 2π/T = π

	

a
T

g t dt t dt t t

a
T

g

T

n

0

0

2
0

2

0

2
1 1

2
5 2 5 0 55 2 5 2 2 5

2

= = - = - =

=

ò ò( ) ( . ) . [ . ] ./

(( ) cos ( . )cost n t dt t n t dto

T

w p= -òò 2
2

5 2 5
0

2

0

Using the formulas from Appendix A.5,

	

cos sin
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1
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a
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n t
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2 2
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p
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Similarly,

	

b
T

g t n t dt t n t dtn o

T

= = -òò2 2
2

5 2 5
0

2

0

( ) sin ( . ) sinw p

g(t)

0 42

5

t6–2

FIGURE 4.4  For Example 4.2.
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We use the formulas

	

sin sin

sin sin cos

at
a

at

t at
a

at
t
a

at

= -

= -

ò

ò

1

1
2

	

b
n

n t
n
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n
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n
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ù
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0 0
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2 2
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p
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p
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.
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.
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pp
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p
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5
n

n
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Hence,

	
g t

n
n t

n

( ) . sin( )= +
=

¥

å2 5
5 1

1
p

p

Practice Problem 4.2  Obtain the trigonometric Fourier series for the signal in 
Figure 4.5.

Answer: z t
n

n t
n

n t
n n

n

( ) .
( )

cos
( )

sin= -
- -{ }

+
-é

ë

ê
ê

ù

û

ú
ú

=

¥

å0 5
1 1 1

1
p

p
p

p

4.3  EXPONENTIAL FOURIER SERIES

The sine and cosine functions can be represented in terms of complex exponentials. 
It turns out that we can use complex exponentials to represent Fourier series. In many 
respects, this makes for a simpler representation.

z(t)

0–4 –3 –2 –1 1

1

2 3 4 5 t

FIGURE 4.5  For Practice Problem 4.2.
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The Fourier series representation of x(t) can be expressed in complex exponential 
form as

	

x t c en
jn t

n

( ) =
=-¥

¥

å w0 	 (4.24)

where
ω0 = 2π/T is the fundamental frequency
the coefficients cn are given by

	

c
T

x t e dtn
jn t

T

= -ò1
0

0

( ) w 	 (4.25)

The exponential Fourier series of a periodic signal x(t) is a representation 
that is the sum of the complex exponentials at positive and negative harmonic 
frequencies.

By substituting the following Euler’s identities in Equation 4.3

	
cosn t e ejn t jn tw w w

0
1
2

0 0= +[ ]- 	 (4.26)

	
sin n t

j
e e

j
e ejn t jn t jn t jn tw w w w w

0
1
2 2

0 0 0 0= -[ ] = - -[ ]- - 	 (4.27)

we get

	

x t a a e e jb e e

a

n
jn t jn t

n
jn t jn t

n

( ) = + +( ) - -( )

= +

- -

=

¥

å0

1

0

1
2

1

0 0 0 0w w w w

22
0 0

1

( ) ( )a jb e a jb en n
jn t

n n
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n

- + +éë ùû
-

=

¥

å w w

	

(4.28)

So the new coefficient cn will be

	

c a

c
a jb

c

c c
a jb

n
n n

n n

n n
n n

0 0

2

2

=

= - = <

= = +
-

,

( )
,

( )*

q 	 (4.29)
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so that x(t) becomes

	

x t c c e c en
jn t

n
jn t

n

( ) = + +éë ùû-
-

=

¥

å0

1

0 0w w 	 (4.30)

The concise form is

	

x t c e c en
jn t

n

n
j n t

n

n( ) ( )= =
=-¥

¥
+

=-¥

¥

å åw w q0 0 	 (4.31)

The complex Fourier coefficients cn can be readily obtained as follows using 
Equations 4.6 and 4.7 for an, bn.

	

c a
T

x t dt

T

0 0

0

1= = ò ( ) 	 (4.32)

For n = 1, 2, 3, …, we have

	

c
a jb

T
x t n t j n t dt

T
x t en

n n

T

jn t

T

= - = - =ò -( )
( )(cos sin ) ( )

2
1 1

0 0

0 0

0w w wòò dt 	 (4.33)

Similarly,

	

c c
a jb

T
x t e dtn n

n n jn t

T

- = = + = ò* ( )
( )

2
1

0

0

w

The last expression is equivalent to stating that for n = −1, −2, −3, …

	

c
T

x t e dtn
jn t

T

= -ò1
0

0

( ) w
	 (4.34)

The three Equations 4.32, 4.33, 4.34 can be combined into one expression

	

c
T

x t e dt nn
jn t

T

= = ± ± ±-ò1
0 1 2 30

0

( ) , , , ,w for … 	 (4.35)

Therefore, the complex Fourier series is

	

x t c en
jn t

n

( ) =
=-¥

¥

å w0 	 (4.36)
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Equation 4.36 is also called complex frequency spectrum of x(t), which is formed 
by both the complex amplitude spectrum (even symmetry) and the phase spectrum 
(odd symmetry).

The three forms of Fourier series are now summarized as follows:

Sine–Cosine Form

	

x t a a n t b n tn n

n

( ) ( cos sin )= + +
=

¥

å0 0 0

1

w w 	 (4.37)

Amplitude–Phase Form

	

x t a A n tn n

n

( ) cos( )= + +
=

¥

å0 0

1

w f 	 (4.38)

Complex Exponential Form

	

x t c en
jn t

n

( ) =
=-¥

¥

å w0 	 (4.39)

The coefficients of the three forms of Fourier series (sine–cosine form, amplitude–
phase form, and exponential form) are related by

	 A a jb cn n n n nÐ = - =f 2 	 (4.40)

or

	
c c

a b b

a
An n n

n n n

n
n n= Ð =

+
Ð - = Ð-| | tanq f

2 2
1

2
	 (4.41)

if only an > 0. Note that the phase θn of cn is equal to ϕn.

Example 4.3

Find the exponential Fourier series for x(t) = t, –1 < t < 1, with f(t + 2n) = f(t) and 
n is an integer. Plot the amplitude and phase spectra.

Solution

Since T = 2, ω0 = 2π/T = π. Hence,

	

c
T

f t e dt te dtn
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T

T

jn t= =-

-

-

-
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2
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( ) w p

/

/
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Using integration by parts,

	 u t du dt= ® =
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We treat n = 0 as a special case.
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Thus,
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For different values of n, we calculate |cn| and θn as shown in Table 4.2. By plotting 
|cn| and θn for different n, we obtain the amplitude spectrum and the phase spec-
trum shown in Figure 4.6. Notice that the amplitude spectrum is an even function, 
while the phase spectrum is odd, as expected.

TABLE 4.2
For Example 4.3

N |cn| ϕn (Degrees) 

−3 0.1061 90

−2 0.1592 −90

−1 0.3183 90

0 0 0

1 0.3183 −90

2 0.1592 90

3 0.1061 −90



186 Signals and Systems: A Primer with MATLAB®

Practice Problem 4.3  For the periodic function y(t) = t2, 0 < t < T, obtain the com-
plex Fourier series for the case T = 2. Determine the amplitude and phase spectra.

Answer: y t
n

jn e jn t

n
n

( ) . ( )= + +
=-¥

¥

¹

å1 333
2

12 2

0

p
p p

See Figure 4.7 for the spectra.

Example 4.4

Find the complex Fourier series of the signal in Figure 4.8.

Solution
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FIGURE 4.6  For Example 4.3.



187Fourier Series

But e−jnπ = cosπn−jsinnπ = cosnπ + 0 = (−1)n
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FIGURE 4.7  For Practice Problem 4.3.
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FIGURE 4.8  For Example 4.4.
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Practice Problem 4.4  Obtain the exponential Fourier series expansion of y(t) 
shown in Figure 4.9.

Answer: y t
j
n

en jn t

n
n

( ) ( )= -
=-¥

¥

¹

å 1
10

0

p
p

4.4  PROPERTIES OF FOURIER SERIES

Some properties of Fourier series are discussed in this section. These properties 
provide us a better understanding of the Fourier series.

4.4.1 L inearity

The Fourier series expansion for periodic signals x(t) and y(t) with the same period 
is given by

	

x t jn tn

n

( ) exp[ ]=
=-¥

¥

åa w0 	 (4.42)

	

y t jn tn

n

( ) exp[ ]=
=-¥

¥

åb w0 	 (4.43)

If z(t) is a linear combination of x(t) and y(t), then

	 z t k x t k y t( ) ( ) ( )= +1 2 	 (4.44)

where k1 and k2 are arbitrary constants. Then we can write

	

z t k k jn t jn tn n

n

n

n

( ) ( )exp[ ] exp[ ]= + =
=-¥

¥

=-¥

¥

å å1 2 0 0a b w g w 	 (4.45)
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0 1 2 3 t–2

FIGURE 4.9  For Practice Problem 4.4.
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This implies that the Fourier coefficients are

	 g a bn n nk k= +1 2 	 (4.46)

The linearity property is easily extended to a linear combination of an arbitrary 
number of signals with period T.

4.4.2 T ime Shifting

When a time shift is applied to a periodic signal x(t), the period T of the signal is 
preserved. The Fourier series coefficient γn

 of the resulting signal x(t − τ) may be 
expressed as

	

g t w w t l w l ln

T

T
x t jn t dt j

T
x jn d= - - = - -ò1 1

0 0

0

0

0

( )exp[ ] exp[ ] ( )exp[ ]

TT

n jn

ò
= -a w texp[ ]0

	

(4.47)

where αnis the nth Fourier series coefficient of x(t). Here, we have changed variables 
by letting λ = t−τ. That is, if

	 x t FS
n( ) ¾ ®¾ a

then

	 x t eFS
n

jn( )- ¾ ®¾ -t a w t0 	 (4.48)

One consequence of this property is that, when a periodic signal is shifted in time, 
the magnitude of the Fourier coefficient remains unaltered, that is, |γn| = |αn|.

4.4.3 T ime Reversal

Time reversal property, when applied to a continuous-time signal, results in a time 
reversal of the corresponding sequence of Fourier series coefficients. To determine 
the Fourier series coefficients of y(t) = x(−t), consider
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T
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By substituting n = −m, we get
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Thus, we conclude that

	

x t

x t

FS
n

FS
n

( )

( )

¾ ®¾

- ¾ ®¾ -

a

a
	 (4.51)

An interesting consequence of time reversal is that when x(t) is even, that is, 
if x(−t)  =  x(t), then its Fourier series coefficients are also even, that is, α−n = αn. 
Similarly, when x(t) is odd, that is, if x(−t) = −x(t), then its Fourier series coefficients 
are also odd, that is, α−n = −αn.

4.4.4 T ime Scaling

Time scaling operation applies directly to each of the harmonic component of x(t). If 

x(t) has the Fourier series representation x t jn tn
n

( ) exp[ ]=
=-¥

¥å a w0 , then the 

Fourier series representation of the time-scaled signal x(at) is

	

x at jn atn

n

( ) exp[ ]=
=-¥

¥

åa w0 	 (4.52)

That is,

	 x at FS
n( ) ¾ ®¾ a 	 (4.53)

The Fourier series coefficients have not changed, the Fourier series representation 
has changed because of the change in the fundamental frequency aω0.

4.4.5 E ven and Odd Symmetries

Three types of symmetries have been discussed—even, odd, and half-wave odd 
symmetry.

A function x(t) is even if x(t) = x(−t), and odd if x(t) = −x(−t). Any function x(t) is a 
sum of an even function and an odd function, and this can be done in only one way.

We know that any periodic function x(t), with period 2π, has a Fourier expansion 
of the form

	

x t a a n t b n tn n

n

( ) cos( ) sin( )= + +
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¥
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w w 	 (4.54)

If x(t) is even, then all the bns vanish and the Fourier series is simply

	

x t a a n tn

n

( ) cos( )= +
=

¥
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If x(t) is odd, then all the a0, ans vanish and the Fourier series is simply

	

x t b n tn

n

( ) sin( )=
=
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å w0

1

	 (4.56)

A periodic function possesses half-wave symmetry if it satisfies the constraints
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è
ç

ö
ø
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2
	 (4.57)

If a function is shifted one half period and inverted, it looks identical to the original, 
then it is called a half-wave symmetry. A half-wave odd symmetry can be even, odd 
or neither.
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This shows that the Fourier series of a half-wave symmetric function contains only 
odd harmonics (Figure 4.10).

(b)

y(t)

–A

A

0 T t

(a)

0–T
–A

A

x(t)

T
t

FIGURE 4.10  Typical examples of half-wave odd symmetric functions.
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4.4.6  Parseval’s Theorem

Parseval’s theorem states that if x(t) is a periodic function with period T, then the 
average power P of the signal is defined by

	

P
T

x t dt

T

= ò1 2

0

( ) 	 (4.59)

Again let x(t) be an arbitrary periodic signal with period T and consider the Fourier 
series of x(t) given by Equation 4.24. By Parseval’s theorem, the average power P of 
the signal x(t) is given by
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	 (4.60)

Parseval’s theorem states that the average power of the signal x(t) over one 
period equals the sum of the squared magnitudes of all the complex Fourier 
coefficients.

To prove Parseval’s theorem, assume x(t) has a complex Fourier series of the usual form:
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Parseval’s theorem can also be written in terms of the Fourier coefficients an, bn of 
the trigonometric Fourier series. The engineering interpretation of this theorem is 
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as follows. Suppose x(t) denotes an electrical signal (current or voltage), then from 
elementary circuit theory x2(t) is the instantaneous power (in a 1 ohm resistor) so that

	

P
T

x t dt

T

= ò1 2

0

( ) 	 (4.62)

is the energy dissipated in the resistor during one period. In terms of the trigonomet-
ric Fourier series, Equation 4.61 becomes
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In terms of the amplitude–phase Fourier series, we have
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Table 4.3 summarizes the power associated with Fourier series coefficients.

Example 4.5

The waveform in Figure 4.11a has the following Fourier series:
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Obtain the Fourier series of y(t) in Figure 4.11b.

Solution

If we take the derivative of x(t) in Figure 4.11a, we obtain y(t) in Figure 4.11b.
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(4.5.1)

TABLE 4.3
Power Associated with Fourier Series Coefficients

Term Sine–Cosine Form Amplitude–Phase Form Exponential Form

DC term ao
2 ao

2 |c0|2

Others
1
2

2 2a bn n+( ) 1
2

An 2|cn|2 = |cn|2 + |c−n|2



194 Signals and Systems: A Primer with MATLAB®

But the slope of x(t) is the amplitude of y(t), that is,
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Substituting for A into Equation 4.5.1 gives
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Practice Problem 4.5  Obtain the Fourier series of the function x(t) in Figure 4.12a 
from the Fourier series of y(t) in Figure 4.12b, which is given as
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Example 4.6

For the waveform shown in Figure 4.13,

	 (a)	 Specify the type of symmetry it has.
	 (b)	 Calculate a3 and b3.

y(t)

–T 2T tT0

Vo

–Vo

(b)

(a)

x(t)

A

–T 2TT0 t

FIGURE 4.11  For Example 4.5.
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Solution

	 (a)	 This is an odd function so that a0 = an = 0.
	 (b)	 T = 4, ω0 = 2π/T = π/2
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	 a3 = 0, b3 = 4(−1)/(9π2) = –0.04503

(a)

x(t)

Vo

–л 3л2лл0 t–2л

(b)

y(t)

–A

A

0 T t

FIGURE 4.12  For Practice Problem 4.5.
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FIGURE 4.13  For Example 4.6.
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Practice Problem 4.6  Determine the trigonometric Fourier series expansion of 
the signal in Figure 4.14. What type of symmetry does it have?

Answer: f t
n

n n t
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Example 4.7

Calculate the average power in the signal

	
x t t t( ) = + - °( ) + - °( )4 2cos 2 3 cos 4 150 .

Solution

Using Equation 4.64, we get

	
P = + + =4

1
2

2 1 18 52 2 2( ) .

Practice Example 4.7  Determine the average power in the signal

	 x t t t( ) cos( ) cos( )= + + ° + - °1 4 60 10 2 120 30p p

Answer: 11.

4.5  TRUNCATED COMPLEX FOURIER SERIES

The Fourier series representation of x(t) can be expressed in complex exponential 
form as
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It is an infinite summation and to truncate x(t) to finite partial sum of xN(t) at n = N, 
we can write Equation 4.65 as follows:
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FIGURE 4.14  For Practice Problem 4.6.
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We expect the signal approximation xN(t) to converge to x(t) as N → ∞. The behav-
ior of the partial sum in the vicinity of discontinuity exhibits ripples and that the 
peak amplitude of these ripples does not seem to decrease with increasing N. Gibbs 
showed that for the discontinuity of unit height, the partial sum exhibits an overshoot 
of 9% of the height of the discontinuity, no matter how large N becomes. Thus, as 
N increases, the ripples in the partial sum become compressed toward the discon-
tinuity, but for any finite value of N, the peak amplitude of the ripples remains con-
stant. This is known as Gibbs phenomenon. The Gibbs phenomenon (also known 
ringing artifacts) is named after the American physicist J. Willard Gibbs.

Gibbs discovered that the truncated Fourier series approximation xN(t) of a signal 
x(t) with discontinuous will in general exhibit high-frequency ripples and overshoot 
x(t) near the discontinuities. If such an approximation is used in practice, a large 
enough value of N should be chosen so as to guarantee that the total energy in this 
ripple is insignificant. These are shown in the Figure 4.15 for various values of N. We 
know that the energy in the approximation error vanishes and that the Fourier series 
representation of a discontinuous signal such as the square wave converges.

4.6  APPLICATIONS

Fourier analysis finds engineering applications in circuit analysis, filtering, ampli-
tude modulation, rectification, harmonic distortion, and signal transmission through 
a linear system. We will only consider three simple applications: circuit analysis, 
spectrum analyzers, and filters.

4.6.1  Circuit Analysis

Fourier analysis enables us to find the steady response of a circuit to a periodic excitation.
The first step involves finding the Fourier series expansion of the excitation. This 
Fourier series representation may be regarded as a series-connected sinusoidal 
sources with each source having its own amplitude and frequency. The second step 
is finding the response to each term in the Fourier series by the phasor techniques. 
Finally, following the principle of superposition, we add all the individual responses.

Example 4.8

If the signal g(t) in Figure 4.4 (see Example 4.2) is the voltage source vs(t) in the 
circuit of Figure 4.16. Find the response vo(t) of the circuit.

Solution

From Example 4.2,
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where
T = 2
ω0 = 2π/T = π
ωn = nω0 = nπ rad/s
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FIGURE 4.15  Convergence of the Fourier series representation of a square wave for several 
values of N.
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Using phasors, we obtain the response Vo in the circuit of Figure 4.16 by voltage 
division, that is,
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	 (4.8.1)

where
R = 4
C =1

For the dc component (ωn = 0 or n = 0),

	 V Vs o= Þ =2 5 2 5. .

This is expected since the capacitor is an open circuit to dc. For the nth harmonic,
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and the corresponding response is obtained from Equation 4.8.1 as
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(4.8.3)

In the time domain,
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(4.8.3)

Practice Problem 4.8  Let the signal in Figure 4.3 (see Practice Problem 4.1) be 
applied to the circuit in Figure 4.17. Find the response vo(t).

Answer: v t
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FIGURE 4.16  For Example 4.8.
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4.6.2 S pectrum Analyzers

As we have observed, the Fourier series provides the spectrum of a signal. By pro-
viding the spectrum of a signal x(t), the Fourier series helps us identify which fre-
quencies are playing an important role in the shape of the output and which ones are 
not. For example, audible sounds have significant components in the frequency range 
of 20 Hz–15 kHz, while microwaves range from 2.4 to 300 GHz.

We regard a periodic signal as band-limited if its amplitude spectrum contains 
only a finite number of coefficients An or cn. For a band-limited signal, the Fourier 
series becomes (truncated)
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	 (4.67)

From this, we see that we need only 2N + 1 terms (namely, a0, A1, A2,…., AN, ϕ1, ϕ2, 
…, ϕN) to completely specify x(t) if ω0 is known. This leads to the sampling theorem.

The sampling theorem states that a band-limited periodic signal whose 
Fourier series contains N harmonics is uniquely specified by its values at 
2N + 1 instants in one period.

A spectrum analyzer is an instrument that displays the frequency components 
(spectra lines) of a signal. Spectrum analyzers are commercially available in various 
sizes and shapes. Figure 4.18 illustrates a typical one. An oscilloscope shows the 
signal in the time domain, while the spectrum analyzer shows the signal in the fre-
quency domain. Spectrum analyzer is perhaps the most useful instrument for circuit 
analysis. It is widely used to measure the frequency response, noise and spurious 
signal analysis, and more.

4.6.3  Filters

Filters are frequency-selective devices used in electronics and communications sys-
tems. Here, we investigate how to design filters to select the fundamental component 

3Ω

1H

+

–

+
–

Vs(t) Vo(t)

FIGURE 4.17  For Practice Problem 4.8.
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(or any desired harmonic) of the input signal and reject other harmonics. This filter-
ing process cannot be accomplished without the Fourier series expansion of the input 
signal.

A filter is a device designed to pass signals with desired frequencies and block 
or attenuate others.

As shown in Figure 4.19, there are four types of filters:

	 1.	A lowpass filter (LPF) passes low frequencies and rejects high frequencies.
	 2.	A highpass filter (HPF) passes high frequencies and rejects low frequencies.
	 3.	A bandpass filter (BPF) passes frequencies within a frequency band and 

blocks or attenuates frequencies outside the band.
	 4.	A bandstop filter (BSF) passes frequencies outside the frequency band and 

stops or attenuates frequencies within the band.

For the purpose of illustration, we will consider two cases: a LPF and BPF.
A typical LPF is shown in Figure 4.20. The output of a LPF depends on the 

input signal vi(t) (with fundamental frequency ω0), the transfer function H(ω) of the 
filter, and the corner or half-power frequency ωc = 1/RC. The LPF characteristi-
cally passes the dc and low-frequency components, while blocking or attenuating the 
high-frequency components. If we make ωc sufficiently large (ωc ≫ ω0, e.g., making 
C small), a large number of the harmonics can be passed. On the other hand, if we 
make ω sufficiently small (ωc ≪ ω0), we can block out all the ac components and 
pass only dc.

A typical BPF is shown in Figure 4.21. The output of a BPF depends on the input 
signal vi(t) (with fundamental frequency ω0), the transfer function H(ω) of the filter, 
its bandwidth B, and its center frequency ωc. The filter passes all the harmonics of 
the input signal within a band of frequencies (ω1 < ω < ω2) centered around ωc and 
rejects other harmonics.

FIGURE 4.18  A spectrum analyzer. (From http://www.radaufunk.com/hp8569b.htm.)

http://www.radaufunk.com/hp8569b.htm
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(a)

LPF
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0 ωc ω
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|H(ω)| |H(ω)|
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0 ωc ω

(d)
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(c)
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ωc ω2ω1 ω
ω

FIGURE 4.19  Ideal frequency response of four types of filters.
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FIGURE 4.21  A typical bandpass filter.
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FIGURE 4.20  A typical lowpass filter.



203Fourier Series

Example 4.9

If the signal in Figure 4.22a is applied to an ideal LPF with the transfer function 
shown in Figure 4.22b, find the output.

Solution

The input signal in Figure 4.22a is the same as the signal in Figure 4.3 except for 
the period is 2π instead of 2. Hence, ω0 = 2π/T = 1. From Practice Problem 4.1, we 
know that the Fourier series expansion is (obtained by time scaling)
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Since the corner frequency of the filter is ωc = 6 rad/s, only the dc component and 
harmonics with nω0 < 6 will be passed. Hence, the output of the filter is
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Practice Problem 4.9  Rework Example 4.9 if the ideal LPF is replaced by the 
ideal BPF whose transfer function is shown in Figure 4.23.

Answer: xy t t t t( ) sin sin sin= + +
6
5

5
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7
7

6
9

9
p p p

0

1
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6 ω
(b)(a)

x(t)

1

0–π π
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2π 3π t

FIGURE 4.22  For Example 4.9.
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FIGURE 4.23  For Practice Problem 4.9.
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4.7  COMPUTING WITH MATLAB®

Although MATLAB does not help in finding the Fourier series of a signal, it can 
help in plotting line spectra and examining the convergence of a Fourier series. The 
following examples show us how.

Example 4.10

Refer to the triangular wave in Figure 4.24. Take A = 10 and T = 2. Truncate the 
series at n = N. Plot x(t) for N = 3, 5, and 10.

Our goal is to examine the convergence of this Fourier series using MATLAB.

Solution

We can show that the Fourier series expansion of x(t) is
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A = 10 and ω = 2π/T = π. If we truncate the series at n = N, then the finite sum 
becomes
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The MATLAB script to compute and plot xN(t) is shown next. Since the period is 
T = 2, we show xN(t) for only 0 < t < 2.

N = input(‘Enter the highest harmonic desired’); %3, 5, 10
t=0:0.01:2;
xN = 5*ones(1,length(t)); % dc component
fac = -40/(pi*pi);
for n=1:N
xN = xN + fac*cos( (2*n -1)*pi*t )/( (2*n-1)^2);
end
plot(t,xN)
xlabel(‘t’)
ylabel(‘partial sum’)

0

A

x(t)

–T 2TT t

FIGURE 4.24  For Example 4.10.
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The script was run for N = 3 and N = 5. The results for these two cases are shown 
in Figure 4.25. There is a noticeable difference for the two cases. However, for 
N = 5 or greater, the result remains the same. We notice that the Fourier series 
converges exactly to the signal. This confirms Fourier’s theorem, which requires 
that xN(t) should converge to x(t) as N→∞.

Practice Problem 4.10  Repeat Example 4.10 for the periodic square wave shown 
in Figure 4.26. The Fourier series expansion is
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Take A = 10 and T = 2. Try N = 5 and N = 10.

Answer: See Figure 4.27.
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FIGURE 4.25  For Example 4.12: (a) xN(t) for N = 3, (b) xN(t) for N = 5.
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FIGURE 4.26  For Practice Problem 4.10.
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FIGURE 4.27  For Practice Problem 4.12: (a) xN(t) for N = 5, (b) xN(t) for N = 10.
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Example 4.11

In Example 4.3, we obtained the exponential Fourier series for f(t) = t, –1 < t < 1, 
with f(t + 2n) = f(t) and n is an integer.
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Use MATLAB to plot the line spectrum for the magnitude and the phase of x(t).

Solution

From Equation 4.11.1, we obtain
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p
	 (4.11.2)

The following MATLAB script uses Equation 4.11.2. The stem plot is shown in 
Figure 4.28.

clear
clc
n = −5:1:5;
c1 = j*(−1).^n;
c2 = n*pi;
if n==0
   cn = 0;
else
cn=c1./c2;
end
mag = abs(cn);
phase = angle(cn)*180/pi; % converts angle in radians to degrees
subplot(2,1,1); stem(n,mag)
xlabel(‘n’); ylabel(‘|cn|’)
subplot(2,1,2); stem(n,phase)
xlabel(‘n’); ylabel(‘\theta_n’)
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FIGURE 4.28  For Example 4.11.
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Practice Problem 4.11  From Practice Problem 4.3, the periodic function y(t) = t2, 
0 < t < T has the complex Fourier series
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Use MATLAB to obtain the magnitude and phase line spectra for the signal f(t).
Answer: See Figure 4.29.

4.8  SUMMARY

	 1.	A periodic function x(t) repeats itself every period T, that is, x(t + T) = x(t).
	 2.	A periodic function x(t) can expressed in terms of sinusoids using Fourier 

series:

	

x t a a n t b n tn n
n

( ) ( cos sin )= + +
=

¥å0 0 0
1

dc
� � �������������� ����

w w

ac
�����������

		  where ω0 = 2π/T is the fundamental frequency. The Fourier series decomposes 
the signal into the dc component a0 and ac components.

		  There are three basic forms of Fourier series representation: the sine–cosine 
form, the amplitude–phase form, and the exponential form.
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FIGURE 4.29  For Practice Problem 4.11.
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	 3.	The Fourier coefficients of sine–cosine form are determined as
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	 4. 	The amplitude–phase form of Fourier series is
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	 5.	The exponential (or complex) form of Fourier series is
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	 6.	For a Fourier series to converge, it must meet Dirichlet conditions, which 
require that the signal x(t) must be integrable, have only a finite number 
of minima and maxima, and have a finite number of discontinuities over a 
period.

	 7.	The line spectra (amplitude and phase) of x(t) is the plot of An and ϕn or |cn| and 
θn versus frequency.
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	 8.	Fourier series representation of a periodic function results in an overshoot 
behavior at points of discontinuity due to partial summation. The overshoot is 
about 9% of the peak-to-peak value. This is known as Gibbs phenomenon.

	 9.	The average-power of periodic voltage and current is
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		  This result is known as Parseval’s theorem. It states that the average power in 

a periodic signal is the sum of the average power in its dc component and the 
average of the powers in its harmonics.

	 10.	 In this chapter, Fourier series is applied to circuit analysis, spectrum analyzers, 
and filters.

	 11.	Fourier series expansion allows us to use the phasor method in analyzing cir-
cuits with nonsinusoidal periodic source signal. We apply the phasor technique 
to determine the response due to each harmonic in the series, transform the 
responses to the time domain, and add them together.

	 12.	Using MATLAB, we can plot the Fourier series and the line spectra for both 
magnitude and phase.

REVIEW QUESTIONS

4.1	 If x(t) = 2t, 0 < t < π, x(t + T) = x(t + π) = x(t), the value of ω0 is
	 (a)	 1, (b) 2, (c) π, (d) 2π
4.2	 Which of the following signals are even?
	 (a)	 t2 cos t, (b) t2 ln(t), (c) exp(t2), (d) t2 + t4, (e) sinh t
4.3	 Which of the following signals are odd?
	 (a)	 sin t, (b) tsin t, (c) exp(t), (d) t3 cos t, (e) sinh t
4.4	 If x(t) = 8cos 100t + 4cos 200t + 2cos 300t + cos 400t +···, the signal is:
	 (a)	 Odd, (b) even, (c) half-wave symmetric, (d) quarter-wave symmetric
4.5	 Since cos t is an even function, cos t + cos (−t) is
	 (a)	 2cos t, (b) 0.5cos t, (c) 2sin t, (d) 0.5sin 2t
4.6	 If x(t) = 12 + 8cost + 4cos3t + 2cos5t +···, the magnitude of the dc component is: 
	 (a)	 12, (b) 8, (c) 4, (d) 2, (e) 0.
4.7	 If x(t) = 12 + 8cost + 4cos3t + 2cos5t +···, the frequency of the sixth harmonic is
	 (a)	 12, (b) 11, (c) 9, (d) 6
4.8	 If x(t) = 10 + 4 cost + 2cos3t, the power in the signal is
	 (a)	 164, (b) 120, (c) 110, (d) 16
4.9	 A Fourier cosine series is one that involves only cosine terms.
	 (a)	 True, (b) False
4.10	 The plot of θn versus nω0 is called
	 (a)	� Complex frequency spectrum, (b) Complex phase spectrum, (c) Complex 

amplitude spectrum

Answers: 4.1b; 4.2a,d; 4.3a,d,e; 4.4b; 4.5a; 4.6a; 4.7b; 4.8c; 4.9a; 4.10b.
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PROBLEMS

Section 4.2—Trigonometric Fourier Series

	 4.1	 Find the trigonometric Fourier series for
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	 4.2	 Determine the sine–cosine Fourier series for the periodic signal in Figure 4.30.
	 4.3	 A periodic signal is given by
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	 (a)	 Compute the period T and the fundamental frequency ω0.
	 (b)	 Identify the Fourier series coefficients an and  bn.
	 4.4	 Obtain the Fourier series expansion for the signal shown in Figure 4.31.

–5

5

x(t)

–3 –2 –1 5 t43210

FIGURE 4.30  For Problem 4.2.

10

g(t)

π 2π–2π –π 3π 4π t0

FIGURE 4.31  For Problem 4.4.
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4.5	 Plot the amplitude and phase spectra for the signal

	
x t t t t( ) = - + - -8 100 0 2 6 200 1 2 4 300cos cos cos( . ) ( . ) ( )p p p

4.6	 Show that

	
A t B t A B t

B

A
cos sin cos tanw w w+ = + -æ

è
ç

ö
ø
÷-2 2 1

4.7	 Determine the Fourier series of the periodic function in Figure 4.32.
4.8	 Expand x(t) in Figure 4.33 in Fourier series.

Section 4.3—Exponential Fourier Series

4.9	 Obtain the exponential Fourier series coefficients for

	 x t t( ) sin ( )= 3 2p

4.10	 Express the sawtooth waveform x(t) in Figure 4.34 as a complex Fourier series.
4.11	� Determine the exponential Fourier series coefficients of the signal in Figure 4.35.
4.12	 Determine the exponential Fourier series for the impulse train in Figure 4.36.
4.13	 The complex exponential Fourier series of a signal x(t) over 0 < t < T is

–1

0–1 1 2

2

3 4 5 t(s)

f (t)

FIGURE 4.32  For Problem 4.7.

–2 –1 0
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1 2 3 4 5 6–3–4

FIGURE 4.33  For Problem 4.8.
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	 (a)	 Calculate T.
	 (b)	 Determine the average value of x(t).
	 (c)	 Find the amplitude of the third harmonic.
4.14	 The complex exponential Fourier series of a signal is given as

–π 2ππ0

A

x(t)

3π t

FIGURE 4.34  For Problem 4.10.

–2 –1 0

1

et

x(t)

1 2 3 t

FIGURE 4.35  For Problem 4.11.

–2π –π 0

1

x(t)

π 2π 3π t

FIGURE 4.36  For Problem 4.12.
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	 x t j e j e j e j ej t jt jt j t( ) ( ) ( )= - + + - + +- -2 4 5 4 23 3

		  Sketch the amplitude and phase spectra.
4.15	 A periodic signal is expressed as
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	 (a)	 Determine the period T and the fundamental frequency ω0.
	 (b)	� Write out x(t) in exponential form and use Euler relation to express x(t) in 

cosine form.
4.16	� Suppose x(t) = 1 + cos2t + 0.5cos4t. Find the Fourier series coefficients of the 

exponential form of x(t).
4.17	 Find the exponential Fourier series for the waveform in Figure 4.37.
4.18	 Determine the complex Fourier series if x(t) = 10cos3t.

Section 4.4—Properties of Fourier Series

4.19	 A periodic signal is given by

	 x t c en

n

jn t( ) =
=-¥

¥

å w0

		  where
		  ω0 = 2π/T
		  T is the period

		  Determine the Fourier coefficients in terms of cn for y(t), where

2π 3π tπ0

Vo

v(t)

FIGURE 4.37  For Problem 4.17.
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	 (a)	 y(t) = x(−t)
	 (b)	 y(t) = x(2t)
	 (c)	 y(t) = x(t−3)

	 (d)	 y t
dx t

dt
( )

( )=

4.20	� If cn is the exponential Fourier series with coefficients of a periodic signal x(t). 
Determine the coefficients of the following:

	 (a)	 y(t) = x(3t)
	 (b)	 z(t) = x(−3t)
	 (c)	 h(t) = 1 + x(2t)
4.21	 Let w(t) = x(t)y(t). Show that if x(t) is even and y(t) is odd, w(t) is odd.
4.22	 Let x(t) and y(t) be periodic signals with the same period T such that
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		  where ω0 = 2π/T. Show that the signal z(t) = x(t)y(t) is periodic with the same 
period T and can be expressed as
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4.23	 Consider the signals shown in Figure 4.38. Which of them have
	 (a)	 Even symmetry?
	 (b)	 Odd symmetry?
	 (c)	 Half-wave odd symmetry?
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–2 0 2 4 t
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FIGURE 4.38  For Problems 4.23 and 4.24.� (Continued)
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FIGURE 4.38 (Continued)  For Problems 4.23 and 4.24.



217Fourier Series

4.24	� Without evaluating any Fourier series coefficients, state which of the signals in 
Figure 4.38 contain

	 (a)	 A dc component
	 (b)	 Only odd harmonics
	 (c)	 Both sine and cosine terms
4.25	 Given the exponential Fourier series of a periodic signal as
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		  Show that
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4.26	� The first half cycle of a periodic signal is shown in Figure 4.39. Sketch the 
signal over −T/2<t<T/2 for each of these cases: 

	 (a)	 y(t) is even
	 (b)	 y(t) is odd
4.27	 Find the average power dissipated in a 2Ω resistor when the applied current is

	 i t t t t A( ) cos cos cos= - +8 6 3 3 5w w w   

4.28	� The amplitude and phase spectra of a truncated Fourier series are shown in 
Figure 4.40.

	 (a)	 Find an expression for the periodic voltage using amplitude-phase form.
	 (b)	 Is the voltage odd or even function of t?
4.29	 The exponential Fourier coefficients of the signal in Figure 4.41a is
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		  Find the coefficients for the signal in Figure 4.41b.

y(t)
1

0

–1

T/4 T/2 t

FIGURE 4.39  For Problem 4.26.
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FIGURE 4.40  For Problem 4.28.
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FIGURE 4.41  For Problem 4.29.
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Section 4.6—Applications

4.30	 Let the input voltage x(t) to the circuit in Figure 4.42 be

	
x t t t t t( ) = + + + +( )1 4 cos cos coscos .2 3 4

		  Determine the output voltage y(t).
4.31	� The periodic current waveform in Figure 4.43 is applied across a 2 kΩ resistor. 

Find the percentage of the total average power dissipation caused by the dc 
component.

4.32	� If the periodic current waveform in Figure 4.44a is applied to the circuit in 
Figure 4.43b, find vo.

4.33	� Find the response io(t) for the circuit in Figure 4.45a, where vs(t) is shown in 
Figure 4.45b.

Section 4.7—Computing with MATLAB®

4.34	� Using MATLAB, write a program to compute and plot the partial sum of the 
sawtooth waveform in Figure 4.4.

4.35	 Use MATLAB to plot
	 (a)	 x(t) = 10 + 6cos2πt + 4cos4πt  0 < t < 2

	 (b)	 y t
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FIGURE 4.42  For Problem 4.30.
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FIGURE 4.43  For Problem 4.31.
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4.36	 The Fourier series of a signal is
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	 Use MATLAB to plot the partial sum xN(t) for N = 5 and N = 9.
4.37	 Use MATLAB to plot the Fourier series expansion
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4.38	 The exponential Fourier series coefficient of a signal is
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		  Using MATLAB, plot the magnitude and phase spectra. Take −5 < n < 5.
4.39	 Repeat the previous problem for
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FIGURE 4.44  For Problem 4.32.
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FIGURE 4.45  For Problem 4.33.
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5 Fourier Transform

Nothing in the world is difficult for one who sets his mind to do it.

—Chinese saying

CAREER IN CONTROL SYSTEMS

A welding robot. (Courtesy of Shela Terry, Science Photo Library, London, UK)

Control systems are an area of electrical engineering where signals and systems 
are used. A control system is designed to regulate the behavior of one or more vari-
ables in some desired manner. Control systems play major roles in our everyday life. 
Household appliances such as heating and air-conditioning systems, switch-con-
trolled thermostats, washers and dryers, cruise control in automobiles, elevators, traf-
fic lights, manufacturing plants, navigation systems—all utilize control systems. In 
the aerospace field, precision guidance of space probes, the wide range of operational 
modes of the space shuttle, and the ability to maneuver space vehicles remotely from 
earth all require knowledge of control systems. In the manufacturing sector, repetitive 
production line operations are increasingly performed by robots, which are program-
mable control systems designed to operate for many hours without fatigue.

Control engineering applies signals and systems theory. It is not limited to any 
specific engineering discipline but may involve environmental, chemical, aeronau-
tical, mechanical, civil, and electrical engineering. For example, a typical task for a 
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control engineer might be to design a speed regulator for a disk drive head. A thor-
ough understanding of control systems techniques is essential to the electrical engi-
neer and is of great value for designing control systems to perform the desired task.

5.1  INTRODUCTION

In Chapter 4, we saw that Fourier series enabled us to represent a periodic signal as a lin-
ear combination of infinite sinusoids. The Fourier series expansion reveals the frequency 
content of the periodic signal. It is also possible to analyze the frequency content of non-
periodic signals. The tool that enables us to do this is the Fourier transform (also known 
as Fourier integral). The transform assumes that a nonperiodic (or aperiodic) signal is a 
periodic signal with an infinite period. The Fourier transform is important in analyzing 
and processing signals in science and engineering, especially in medical images, com-
puterized axis tomography (CAT), and magnetic resonance imaging (MRI).

The Fourier transform is similar to Laplace transform. Both are integral trans-
forms. The Fourier transform may be regarded a special case of Laplace transform 
with s = jω, when the Laplace transform exists. Just like the bilateral Laplace trans-
form, Fourier transform can deal with systems having inputs for t < 0 as well as those 
for t >0. Fourier transform is very useful in linear systems, filtering, communication 
systems, and digital signal processing, in situations where Laplace transform does 
not exist.

The chapter begins by defining the Fourier transform from Fourier series. Then 
we present and prove the properties of Fourier transform, which are useful in deriv-
ing Fourier transform pairs. We discuss Parseval’s theorem, compare the Laplace 
and Fourier transforms, and see how the Fourier transform is applied in circuit anal-
ysis, amplitude modulation, and sampling. We finally learn how to use MATLAB® 
in Fourier analysis.

5.2  DEFINITION OF THE FOURIER TRANSFORM

There is a close connection between the definition of Fourier series and the Fourier 
transform for functions x(t) that are zero outside of an interval. For such a function, 
we can calculate its Fourier series on any interval that includes the points where x(t) 
is not identically zero. The Fourier transform is also defined for such a function. As 
we increase the length of the interval on which we calculate the Fourier series,  the 
Fourier series coefficients begin to look like the Fourier transform and the sum of the 
Fourier series of x(t) begins to look like the inverse Fourier transform. To explain this 
more precisely, suppose T is large enough so that the interval [−T/2, T/2] contains the 
interval on which x is not identically zero.

Recall that if x(t) is a periodic function with period T, then we can expand it in a 
complex Fourier Series,
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where
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The spacing between adjacent harmonics is
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(5.4)

In view of the previous discussion, as T → ∞, we can put ω0 as ∆ω and replace the sum 
over the discrete frequencies nω0 by an integral over all frequencies. We replace nω0 
by a general frequency variable ω. We then obtain the double integral representation:
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The inner integral is known as the Fourier transform of x(t) and is represented by 
X(ω), that is,

	

X x t x t e dtj tw w( ) = ( )éë ùû = ( ) -
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	 (5.6)

where F  is the Fourier transform operator.

The Fourier transform of a signal x(t) is the integration of the product of x(t) 
and e−jωt over the interval from −∞ to +∞.
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X(ω) is an integral transformation of x(t) from the time-domain to the frequency-
domain and is generally a complex function. X(ω) is known as the spectrum of x(t). 
The plot of its magnitude |X(ω)| versus ω is called the amplitude spectrum, while that 
of its phase ∠X(ω) versus ω is called the phase spectrum. If a signal is real-valued, its 
magnitude spectrum is even, that is, |X(ω)| = |X(−ω)| and its phase spectrum is odd, 
that is, ∠X(ω) = −∠X(−ω). Both the amplitude and phase spectra provide the physical 
interpretation of the Fourier transform.

We can write Equation 5.5 in terms of X(ω) and we obtain the inverse Fourier 
transform as

	

x t X X e dj t( ) = ( )éë ùû = ( )
-¥

¥

òF w
p

w ww1
2

	 (5.7)

We say that the signal x(t) and its transform X(ω) form a Fourier transform pair and 
denote their relationship by

	 x t X( ) ( )Û w 	 (5.8)

We will denote signals by lowercase letters and their transforms by uppercase letters.
Not all functions have Fourier transforms. The necessary conditions required for 

a function to be transformable are called the Dirichlet conditions similar to the 
Fourier series. These are listed as:

	 1.	x(t) is bounded.
	 2.	x(t) has a finite number of maxima and minima within any finite interval.
	 3.	x(t) has a finite number of discontinuities within any finite interval. 

Furthermore, each of these discontinuities must be finite.
	 4.	x(t) is absolutely integrable, that is,

	

x t dt( ) <¥
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Therefore, absolutely integrable signals that are continuous or that have a finite num-
ber of discontinuities have Fourier transforms.

Example 5.1

Find the Fourier transform of the following functions: (a)δ(t), (b) e j tw0 , (c) sinω0t, 
(d) e−atu(t).

Solution
	 (a)	 For the impulse function,
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		  where the sifting property of the impulse function in Equation 1.21 has been 
applied. Thus,

	 F[ ( )]d t = 1	 (5.1.2)

		  This shows that the magnitude of the spectrum of the impulse function 
is constant; that is, all frequencies are equally represented in the impulse 
function.

	 (b)	 From Equation 5.1.2,

	 d( ) [ ]t = -F 1 1

		  Using the inverse Fourier transform formula in Equation 5.7,

	

d
p

ww( ) [ ]t e dj t= =-

-¥

¥

òF 1 1
1

2
1

		  or
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		  Interchanging variables t and ω results in
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		  Using this result, the Fourier transform of given function is
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		  Since the impulse function is an even function, δ(ω0−ω) = δ(ω−ω0),

	 F[ ] ( )e j tw pd w w0 2 0= - 	 (5.1.5)

		  By simply changing the sign of ω0, we readily obtain

	 F[ ] ( )e j t- = +w pd w w0 2 0 	 (5.1.6)

		  Also, by setting ω0 = 0,

	 F[ ] ( )1 2= pd w 	 (5.1.7)
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	 (c)	 By using the result in Equations 5.1.5 and 5.1.6, we get
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Practice Problem 5.1  Determine the Fourier transform of the following func-
tions: (a) the rectangular pulse Π(t/τ), (b) δ(t + 3), (c) 2cosω0t.

Answer: (a) 
2

2 2w
wt

t
wt

sin sin= c , (b) ej3ω, (c) 2π[δ(ω + ω0) + δ(ω−ω0)]

Example 5.2

Obtain the Fourier transform of the signal shown in Figure 5.1.

Solution

	

X x t e dt A e dt Ae dt

A
j

e

j t j t j t

j t

( ) ( ) ( )w

w

w w w

w

= = - +

=

-

-¥

¥

-

- -

-

ò ò ò
1

0

0

1

0

--
-

=
-

- - +( )

= -

-

-

1

1

0

1 1

2
1

A
j

e

jA
e e

j A

j t

j j

w

w

w
w

w

w w

(cos )



227Fourier Transform

Practice Problem 5.2  Derive the Fourier transform of the triangular pulse 
defined as
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Example 5.3

Find the Fourier transform of the two-sided exponential pulse shown in Figure 5.2. 
Sketch the transform.

Solution

Let x t e
e t

e t
a t

at

at
( )

,

,
| |= =

<
>

ì
í
ï

îï
-
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0

0

A

1

–A

t–1

x(t)

0

FIGURE 5.1  For Example 5.2.
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x(t)

e–a|t|

t

FIGURE 5.2  For Example 5.3.
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The Fourier transform is

	

X x t e dt e e dt e e dt
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X(ω) is real in this case and it is sketched in Figure 5.3.

Practice Problem 5.3  Determine the Fourier transform of the signum function in 

Figure 5.4, that is, x t t
t

t
( ) sgn( )

,

,
= =

>
- <

ì
í
î

1 0

1 0
. Sketch |X(ω)|.

Answer: 
2
jw . See Figure 5.5.

1/a

–a a ω

2/a

X(ω)

FIGURE 5.3  Fourier transform of x(t) in Figure 5.2.

0

sgn(t)

1

t

–1

FIGURE 5.4  The signum function of Practice Problem 5.3.
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5.3  PROPERTIES OF FOURIER TRANSFORM

The properties of the Fourier transform are summarized as follows. These proper-
ties have important interpretations and meanings in the context of signals and signal 
processing. The properties of the Fourier transform provides valuable insight into 
how signals operating in the time-domain are described in the frequency-domain. 
Many properties like linearity, time scaling and shifting, frequency shifting, time 
differentiation and integration, frequency differentiation, duality, convolution, and 
Parseval’s Theorem are discussed as follows.

5.3.1 L inearity

The Fourier transform is a linear transform. That is, suppose we have two functions 
x1(t) and x2(t), with Fourier transform given by X1(ω) and X2(ω), respectively, then the 
Fourier transform of x1(t) and x2(t) can be easily found as

	
F a x t a x t a X a X1 1 2 2 1 1 2 2( ) + ( )éë ùû = ( ) + ( )w w 	 (5.10)

where a1 and a2 are constants (real or complex numbers). Equation 5.10 can be easily 
shown to be true via using the definition of the Fourier transform
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(5.11)

This can be extended to a linear combination of an arbitrary number of signals.

ω0

|X(ω)|

FIGURE 5.5  Fourier transform of the signal in Figure 5.4.
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5.3.2 T ime Scaling

The scaling property of the Fourier transformation is as follows. If F w( ) = ( )éë ùûx t  
and a is a real constant. Then
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	 (5.12)

resulting in a new frequency ω/a. Equation 5.12 can be found using the definition
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Letting λ = at, dλ = adt so that
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Now if a is positive, (a > 0),
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If a is negative (a > 0),
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Therefore, we can see that for the general case of scaling with a real number a we get 
Equation 5.12. The scaling property is sometimes also called the reciprocal spread-
ing property.

5.3.3 T ime Shifting

Another simple property of the Fourier transform is the time shifting. If 

X x tw( ) = ( )éë ùûF  and t0 is a constant, then

	
F x t t e Xj t-( )éë ùû = ( )-

0
0w w 	 (5.14)
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If the original function x(t) is shifted in time by a constant amount, it should have the 
same magnitude of the spectrum, X(ω). That is, a time delay does not cause the fre-
quency content of X(ω) to change at all. Since the complex exponential always has a 
magnitude of 1, we see that time delay alters the phase of X(ω) but not its magnitude.

By definition,

	

F x t t x t t e dtj t-( )éë ùû = -( )éë ùû
-

-¥

¥

ò0 0
w

	 (5.15)

Letting λ = t − t0, dλ = dt, and t = λ + t0, so that

	

F x t t x e d e x e dj t j t j-( )éë ùû = ( ) = ( )- +( ) -

-¥

¥

-ò0
0 0l l lw l w wl ll ww= ( )-

-¥

¥

ò e Xj t0

By following similar steps,

	
F x t t e Xj t+( )éë ùû = ( )0

0w w 	 (5.16)

5.3.4  Frequency Shifting

This property forms a basis for every radio and TV transmitter. This property states 

that if X x tw( ) = ( )éë ùûF  and ω0 is constant, then

	
F x t e Xj t( )éë ùû = -( )w w w0

0 	 (5.17)

Note that this is a dual of the time shifting property. The previous equation means 
that a shifting in the frequency-domain is equivalent to a phase shift in the time-
domain. By definition,
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5.3.5 T ime Differentiation

If X x tw( ) = ( )éë ùûF , then the Fourier transform of the derivative of x(t) is given by

	
F ¢( )éë ùû = ( )x t j Xw w 	 (5.19)

This states that the transform of the derivative of x(t) is obtained by multiplying its 
transform X(ω) by jω. By definition,
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Taking the derivative of both sides with respect to t gives

	

F

F

dx t

dt

j
X e d j X

x t j X

j t( )
= ( ) = ( )éë ùû

¢( )éë ùû =

-

-¥

¥

òw
p

w w w w

w w

w

2
1

(( )
	 (5.21)

The nth derivative of the Equation 5.19 is

	
F x t j Xn n( ) ( )é
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û = ( ) ( )w w 	 (5.22)

5.3.6  Frequency Differentiation

This property states that if X x tw( ) = ( )éë ùûF  then
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By definition,
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(5.24)
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5.3.7 T ime Integration

If X x tw( ) = ( )éë ùûF  then, the integration of function x(t) is given by
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Integrating x(t) in the time-domain leads to division of X(ω) by jω plus an additive 
term πX(0)δ(ω) to account for the possibility of the dc component that may appear in 
the integral of x(t). If we replace ω by 0 in Equation 5.6

	

X x t dt0( ) = ( )
-¥

¥

ò 	 (5.26)

indicating that the dc component is zero when the integral of x(t) over all time 
vanishes.

5.3.8 D uality

Duality between the time and frequency domains is another important property of 
Fourier transforms. This property relates to the fact that the analysis equation and syn-
thesis equation look almost identical except for a factor of 1/2π and the difference of 
a minus sign in the exponential in the integral. The duality property states that if X(ω) 
is the Fourier transform of x(t), then the Fourier transform of X(t) is 2πx(−ω); that is,

	
F Fx t X X t x( )éë ùû = ( ) Þ ( )éë ùû = -( )w p w2 	 (5.27)

This expresses the fact that the Fourier transform pairs are symmetric. To derive the 
property, from Equation 5.7
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Replacing t with −t, in Equation 5.29, we obtain
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By interchanging t and ω, and comparing the result with the Equation 5.28
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5.3.9  Convolution

According to the convolution property, the Fourier transform of the convolution of 
two time functions is the product of their corresponding Fourier transforms. If x(t) 
and h(t) are two signals, their convolution y(t) is given by the convolution integral

	

y t h t x t h x t d( ) = ( )* ( ) = ( ) -( )
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¥

ò t t t 	 (5.32)

If X(ω), H(ω), and Y(ω) are the Fourier transforms of x(t), h(t), and y(t) respectively, then

	
Y h t x t H X( ) [ ( )* ( )] ( ) ( )w w w= =F 	 (5.33)

which states that the Fourier transform of the convolution of two-time functions is 
the product of their corresponding Fourier transforms.

To derive the convolution property, we take the Fourier transform on both sides 
of Equation 5.32 we get
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By taking λ= t − τ so that t = λ + τ and dt = dλ.
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Table 5.1 presents these and other properties of Fourier transform, while Table 5.2 
lists the transform pairs of some common functions. Note the similarities between 
these tables on Fourier transform and Tables 3.1 and 3.2 on Laplace transform.
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Example 5.4

A signal x(t) has a Fourier transform given by
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Without finding x(t), find the Fourier transform of the following:
	 (a)	 x(t − 3)
	 (b)	 x(4t)
	 (c)	 e−j2tx(t)
	 (d)	 x(−2t)

TABLE 5.1
Properties of the Fourier Transform

No. Property x(t) X(ω)

1. Linearity a1x1(t) + a2x2(t) a1X1(ω) + a2X2(ω)
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9. Time reversal x(−t) X(−ω) or X*(ω)

10. Duality X(t) 2πx(−ω)

11. Time convolution x1(t)* x2(t) X1(ω)X2(ω)
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TABLE 5.2
Fourier Transform Pairs

No. x(t) X(ω)

1. δ(t) 1

2. 1 2πδ(ω)

3. u(t) pd w
w

( ) +
1
j
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w
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(Continued)



237Fourier Transform

Solution

We apply the relevant property for each case:
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Practice Problem 5.4  A signal x(t) has the Fourier transform
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Find the Fourier transform of the following signals:

	 (a)	 y(t) = x(2t − 1)
	 (b)	 z(t) = dx(2t)/dt
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TABLE 5.2 (Continued)
Fourier Transform Pairs

No. x(t) X(ω)
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Example 5.5

Determine the Fourier transform of the signal in Figure 5.6.

Solution

Although the Fourier transform of x(t) can be found directly using Equation 5.6, it 
is much easier to find it using the derivative property. Taking the first derivative of 
x(t) produces the signal in Figure 5.7a. Taking the second derivative gives us the 
signal in Figure 5.7b. From this,

	 ¢¢ = + - + + - - -x t t t t t( ) ( ) ( ) ( ) ( )4 3 6 2 6 2 4 3d d d d

–3

–4

4

x(t)

–2 –1 0 1 2 3 t

FIGURE 5.6  For Example 5.5.

x˝(t)

1 2 3
t

0–1–3

–3 –1 0 1 2 3 t

–6δ(t+2)

6δ(t–2)

(a)

(b)

–4δ(t-3)

4δ(t+3)

4

–2

x΄(t)

–2

–2

FIGURE 5.7  For Example 5.5: (a) first derivative of x(t), (b) second derivative of x(t).
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Taking the Fourier transform of each term, we obtain
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Practice Problem 5.5  Determine the Fourier transform of the function in Figure 5.8. 

Answer: Y
j

( ) (sin sin )w
w

w w= -
10

2 22

5.4  INVERSE FOURIER TRANSFORM

In general, we would use Equation 5.7 to find the inverse Fourier transform x(t) of 
X(ω). Quite often, the Fourier transform is in the form of a rational function. In this 
case, we perform a partial fraction expansion of X(ω) and finding the corresponding 
time-domain signals using the Fourier transform pairs in Table 5.2. The procedure is 
similar to what we did in Section 3.4 for Laplace transform.

Example 5.6

Find the inverse Fourier transform of
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FIGURE 5.8  For Practice Problem 5.5.
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Solution

	 (a)	 To avoid complex algebra, let s = jω. Using partial fraction,
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		  Taking the inverse Fourier transform of each term,

	
g t e u t e u tt t( ) = - -( ) - ( )-4 62 3

	 (b)	 Because of the delta function, we use Equation 5.7 to find the inverse.
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		  where the sifting property has been applied.

Practice Problem 5.6   Obtain the inverse Fourier transform of

	 (a)	 F ( )w
w

w

=
+

-e
j

j2

1

	 (b)	 G
j j

( )
( )

( )( )
w

pd w
w w

=
+ +5 2

Answer: (a) f(t) = e−(t−2)u(t−2), (b) g(t) = 0.05

5.5  APPLICATIONS

The Fourier transform is used extensively in a variety of fields such as optics, spec-
troscopy, acoustics, computer science, and electrical engineering. In electrical 
engineering, it is applied in circuit analysis, communications systems, and signal 
processing. Here we consider three application areas: circuit analysis, amplitude 
modulation (AM), and sampling. Filtering is another area of application, but we have 
already considered this in Section 4.6.3.
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5.5.1  Circuit Analysis

We use Fourier transform to analyze circuits with nonsinusoidal excitations exactly 
in the same way we use phasor techniques to analyze circuits with sinusoidal excita-
tions. For example, Ohm’s law is written as

	
V Z Iw w w( ) = ( ) ( ) 	 (5.36)

where
V(ω) and I(ω) are the Fourier transforms of the voltage and current respectively
Z(ω) is the impedance

The impedances of resistors, inductors, and capacitors are the same as in phasor 
analysis, that is,

	

R R

L j L

C
j C

Þ
Þ

Þ

w

w
1

	 (5.37)

The Fourier approach to circuit analysis generalizes the phasor technique. It 
involves three steps. First, we transform the circuit elements into frequency-domain 
as in Equation 5.57 and take the Fourier transform of the excitations. Second, we 
apply circuit techniques such as Kirchhoff’s voltage law, Kirchhoff’s current law, 
voltage division, current division, source transformation, node or mesh analysis to 
find the unknown response (current or voltage). Third, we finally take the inverse 
Fourier transform to get the response in the time-domain. (We should note that 
Fourier analysis cannot handle circuits with initial conditions.)

As usual, the transfer function H(ω) is the ratio of the output response Y(ω) to the 
input excitation X(ω):

	
H

Y

X
( )

( )
( )

w w
w

= 	 (5.38)

or

	 Y H X( ) ( ) ( )w w w= 	 (5.39)

Equation 5.39 states that if we know the transfer function H(ω) and the input X(ω), 
we can find the output Y(ω).
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Example 5.7

Determine vo(t) in the circuit of Figure 5.9, where is = 10e−2tu(t)A.

Solution
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Using current division, the current through the capacitor is
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Taking the inverse Fourier transform produces

	 v t e e u t Vo
t t( ) ( ) ( )= -- -20 2  

Practice Problem 5.7  Find io(t) in the circuit of Figure 5.10. Let vs(t) = 4e−2tu(t).

Answer: i(t) = 4(e−0.5t−e−t)u(t) A

2 Ω 0.5 F vo

+

–

is

FIGURE 5.9  For Example 5.7.
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Example 5.8

Given the circuit in Figure 5.11, with its excitation, determine the Fourier transform 
of i(t).

Solution

One easy way to find the Fourier transform of vs is to first find its derivative.

	 v t t ts¢ = - -( ) ( ) ( )8 8 1d d

Taking the Fourier transform of each side,

	
j V e V

j
es

j
s

jw
w

w w= - ® = -( )- -8 1
8

1( )

The current I(ω) is obtained as
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FIGURE 5.10  For Practice Problem 5.7.
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FIGURE 5.11  For Example 5.8.



244 Signals and Systems: A Primer with MATLAB®

	

X s
s s

A
s

B
s

s j

A sX s

B s X s

s

s

( )
( )

( )

( ) ( )

=
+

= +
+ ¢

=

= =

= + = -

=

=-

8
3 3

8
3

3
8
3

0

3

w

	

X
j j

x t t e u tt

( )

( ) sgn( ) ( )

w
w w

= -
+

æ

è
ç

ö

ø
÷

= -æ
è
ç

ö
ø
÷

-

8
3

1 1
3

8
3

1
2

3

Since, I(ω) = X(ω)(1−e−jω),
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Practice Problem 5.8  Determine the voltage Vo(ω) in the circuit of Figure 5.12b, 
given the voltage source shown in Figure 5.12a.

Answer: V
j

e j eo
j j( )

( )
w

w w
ww w=

+
+ -( )- -1

1 4
12

5.5.2 A mplitude Modulation

AM is one of the applications of the Fourier transform. Transmission of informa-
tion through space has become part of modern society, especially with the wire-
less telephony. However, transmitting intelligent signals—such as for speech and 
music—is not practical: it requires a lot of power and large antennas. One way of 
transmitting low-frequency audio information (50 Hz to 20 kHz) is to transmit it 
along with a high-frequency signal, called a carrier. Any of the three characteristics 

1

0

(a) (b)

1 t

vi(t)

vi(t) –

–

vo

+

1 F

4 Ω

+

FIGURE 5.12  For Practice Problem 5.8.
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(amplitude, frequency, or phase) of a carrier can be controlled, to be able to carry the 
intelligent signal, called the modulating signal. Here, we are interested in the control 
of the carrier’s amplitude. This is known as AM.

Amplitude modulation (AM) is a process whereby we let the modulating 
signal control the amplitude of the carrier.

Consider the signal multiplier shown in Figure 5.13. We focus only on the case 
when the modulating signal m(t) = cosωot. The output of the multiplier is

	 y t x t to( ) ( )cos= w 	 (5.40)

Since the multiplication in the time-domain always results in convolution in the 
frequency-domain,
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2

1
2

	

(5.41)

Thus, modulation results in shifting the spectrum of the signal as illustrated in 
Figure 5.14. The signal with frequency ωc−ωo is known as the lower sideband, while 
the one with frequency ωc + ωo is known as the upper sideband.

At the receiving end of the transmission, the audio information is received from 
the modulated carrier by a process known as demodulation. This shifts back the 
message spectrum to its original low frequency location. A synchronous demodula-
tion multiplies the modulated signal y(t) with cosωot as shown in Figure 5.15.

	 z t y t to( ) ( )cos= w 	 (5.42)

Taking the Fourier transform as we did before,
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(5.43)

This is illustrated in Figure 5.16. The signal z(t) is passed through a low-pass filter 
(see Figure 5.17a), which passes only the low-frequency components. Thus, x(t) is 
extracted as shown in Figure 5.17b.

X
y(t)x(t)

m(t)

FIGURE 5.13  Modulated signal.
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z(t)

cosωot

X
y(t)

FIGURE 5.15  Demodulated signal.

(a)
B–B ω0
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|X(ω)|
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ω0 + B – ω0–ω0 – B  – ω0 + B ω0 – B

½ X(ω –  ω0)½ X(ω +  ω0)

ω0
(b)

0 ω

FIGURE 5.14  Amplitude spectra of: (a) signal x(t), (b) modulated signal y(t).

0

(b)

B–B–2ω0 ω2ω0

A/2
1/4X(ω + ω0)

|Z(ω)|

1/4X(ω –  ω0)

FIGURE 5.16  Amplitude spectra of z(t).
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Example 5.9

An AM signal is given by

	 x t t t( ) cos cos= 200 104p

Identify the upper sideband and the lower sideband.

Solution
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Practice Problem 5.9  A music signal whose frequencies range from 80 Hz to 
12 kHz is used to modulate a 2-MHz carrier. Find the range of frequencies for the 
lower and upper sidebands.

Answer: Lower sideband: 1,999,200–1,988,000 Hz
		  Upper sideband: 2,000,080–2,012,000 Hz

5.5.3 S ampling

Sampling is an important operation in signal processing. It may be regarded as a 
way of reducing analog signals to discrete signals. Thus sampling is the bridge from 

|H(ω)|

ω0

2

(a)

|X(ω)|

ωB–B 0
(b)

A

FIGURE 5.17  (a) Low-pass filter, (b) spectrum of the original signal.
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continuous to discrete signals. In analog systems we process entire signals, but in 
digital systems, only samples of signals are necessary. Sampling can be done by 
using a train of pulses or impulses. We will use impulse sampling here.

Consider the continuous-time signal x(t) depicted in Figure 5.18a. We multiply by a 
train of impulses δ(t−nTs) as shown in Figure 5.18b, where Ts is the sampling interval 
and fs = 1/Ts is the sampling frequency (or rate). The value of x(t) at point nTs is

	 x t t nT x nT t nTs s s( ) ( ) ( ) ( )d d- = - 	 (5.44)

x(t)

(a)

0 t

δ(t– nTs)

–Ts 2Ts  3Ts

(b)

0 Ts … t

xs(t)

(c)

–Ts 2Ts  3Ts0 Ts … t

FIGURE 5.18  (a) Continuous (analog) signal to be sampled, (b) train of impulses, (c) sam-
pled (digital) signal.
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The sampled signal xs(t) in Figure 5.18c is, therefore,
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åd 	 (5.45)

We take the Fourier transform of this and apply the frequency convolution property.
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(5.46)

where ωs = 2π/Ts. We have used item 23 in Table 5.2. Equation 5.46 states that the 
Fourier transform Xs(ω) of the sampled signal is a sum of translates of the Fourier 
transform of the original signal X(ω) at a rate of 1/Ts.

To ensure that the sampling process is successful, we must carefully select the 
sampling interval. This is stated in the following sampling theorem:

A band-limited signal, with bandwidth W hertz, may be completely recovered 
from its samples if taken at a frequency at least twice as high as 2W samples 
per second.

(In practice, a signal is made band-limited by passing it through a low-pass filter 
before sampling it.) For a signal, with no frequency component higher than W hertz, 
there is no loss of information if the sampling frequency is at least twice the highest 
frequency in the signal, that is,

	
1

2
T

f W
s

s= ³ 	 (5.47)

The minimum sampling frequency fs = 2W is known as the Nyquist frequency 
or rate, and the maximum spacing 1/fs is the Nyquist interval, named after Harry 
Nyquist (1889–1976) for his paper published in 1928. The Nyquist rate is the mini-
mum sampling rate necessary to preserve the information x(t). A signal is said to be 
oversampled if it is sampled at a rate greater than its Nyquist rate. It is undersampled 
if it is sampled at less than the Nyquist rate.
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Example 5.10

For frequencies above 4 kHz, the spectrum of a signal is zero. To sample the 
signal, find the maximum time spacing between samples.

Solution

	 W = 4 kHz

The Nyquist rate is

	 fs = 2W = 8 kHz

The Nyquist interval is

	
T

f
s

s

= =
´

=
1 1

8 10
1253 ms

Practice Problem 5.10  A voice signal is band-limited to 2.5 kHz. Find the 
Nyquist rate and the Nyquist interval for the signal.

Answer: 5 kHz, 0.2 ms

5.6  PARSEVAL’S THEOREM

Parseval’s theorem demonstrates another application of the Fourier transform. It 
states the relationship between energy in the time and frequency domains. The theo-
rem is important in communications and signal processing.

If p(t) is the power associated with the signal, the energy carried by the signal is

	

E p t dt=
-¥

¥

ò ( ) 	 (5.48)

It is convenient to use a 1 − Ω resistor as the base for energy calculation. For a 1 − Ω 
resistor, p(t) = v2(t) = i2(t) = x2(t), where x(t) stands for either voltage or current. Thus 
Equation 5.48 becomes

	

E x t dt1
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Parseval’s theorem states that this same energy can be calculated in the frequency-
domain as

	

E x t dt X d1
2 21
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w w 	 (5.50)

indicating that the Fourier transform is an energy-conserving relation.

Parseval’s theorem states that the total energy delivered to a 1 − Ω resistor 
equals the total area under the square x2(t) or 1/2π times the total area under 
the magnitude of the Fourier transform squared |X(ω)|2.

Parseval’s theorem is named after the French mathematician Marc-Antoine 
Parseval des Chênes (1755–1836). It relates energy between the time-domain and the 
frequency-domain. It provides the physical significance of X(ω), namely, that |X(ω)|2 
is the energy density (in joules per hertz) corresponding to x(t). The plot of |X(ω)|2 

versus ω is the energy spectrum of the signal x(t).
To derive Equation 5.50, we begin with Equation 5.49 and substitute Equation 5.7 

for one of the x(t)′s.
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The function x(t) can be moved inside the inner integral, since the integral does not 
involve time:

	

E x t X e d dtj t
1

1
2

W

-¥

¥

-¥

¥

= òòp
w ww( ) ( ) 	 (5.52)

Reversing the order of integration,
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But X(ω)X* (ω) = |X(ω)|2. Hence,
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as expected. Equation 5.54 shows the energy of x(t) can be computed directly in the 
time-domain or indirectly from X(ω) in the frequency-domain.

Since |X(ω)|2 is an even function, we may integrate from 0 to ∞ and double the 
result; that is,
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We may calculate the energy in any frequency band ω1 < ω < ω2 as

	

E X d1
21

2
1

2

W = òp
w w

w

w

| ( ) | 	 (5.56)

We should note that Parseval’s theorem, as stated here, applies to nonperiodic 
signals. Parseval’s theorem for periodic signals was covered in Section 4.4.6.

Example 5.11

A band-pass filter has its lower and upper cutoff frequencies as 10 and 20 Hz 
respectively. If the input signal is Vi = 4e−tu(t), calculate the 1 − Ω energy of the 
input and the percentage that appears at the output.

Solution

The energy of the input signal is
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The Fourier transform of the input signal is
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But 
dx

a a
x
a

C2 2
11

+
= +ò -

w
tan

	
Eo = = - =-8 40

20
8

1 5628 1 5549 0 020121

p
w

p
p p

tan ( . . ) .

	

E
E

o

i

´ = =100
2 012

8
0 252

.
. %

Practice Problem 5.11  If x(t)⇔X(ω), and
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Answer: 2010.62 J.

5.7  COMPARING THE FOURIER AND LAPLACE TRANSFORMS

The Fourier and Laplace transforms are closely related, as evident in their defini-
tions, which are repeated here for convenience. The general (bilateral) Laplace trans-
form of x(t) is
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where s = σ + jω. If we let s = jω, Equation 5.57 becomes
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which is the Fourier transform of x(t). For a causal signal x(t) (i.e., positive-time sig-

nal, x(t) = 0, t < 0) and | ( ) |x t dt < ¥
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ò , the two transforms are related by
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showing that the Fourier transform is a special case of the Laplace transform with 
s = jω. We can use Equation 5.59 to obtain the Fourier transform of signals for which 
the Fourier integral converges. This integral will converge when all the poles of F ( )s  
lie in the left half of the s-plane and not on the jω axis.

The Laplace transform defined and used in Chapter 4 is one-sided (or unilateral) 
in that the integral is over 0 < t < ∞, restricting its usefulness to only positive-time 
signals, x(t), t > 0. The Fourier transform accommodates signals existing for all time.

Although the Laplace transform has some advantages over the Fourier transform 
in circuit analysis, being an extension of Fourier analysis to nonperiodic signals, 
Fourier transform uses the same frequency-domain representation as phasor analy-
sis. Fourier transform shares some operational properties with the Laplace trans-
form but has some unique properties. For circuit analysis, Laplace transform is more 
widely used because the Laplace integral converges for a wider range of signals and 
automatically incorporates initial conditions.

5.8  COMPUTING WITH MATLAB®

MATLAB® function fourier can be used to find the Fourier transform of a signal 
x(t), while the function ifourier can be used to find the inverse Fourier transform 
of X(ω). How to use them can be displayed with the help Fourier and help ifourier 
commands. Since transfer functions are already functions of frequency, it is straight-
forward and easy to plot them using MATLAB.

Example 5.12

Use MATLAB to find the Fourier transform of

	 x t u t e u tt( ) ( ) ( )= - - -2 2

Solution

The MATLAB script for finding the Fourier transform of x(t) is as follows:

syms  x t
 x=heaviside(t-2)-exp(-2*t)*Heaviside(t) %define the signal
 X = fourier(x)
pretty(X) % simplify

This returns

x =
heaviside(t - 2) - heaviside(t)/exp(2*t)
 X =
- (1/exp(2*w*i))*(- pi*dirac(-w) + i/w) - 1/(2 + w*i)
 
         1     /                  i \      1 
  - ---------- | - pi dirac(-w) + - | - -------
    exp(2 w i) \                  w /   2 + w i
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From this, we obtain
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Practice Problem 5.12  Let y(t) = 4δ(t) + 2e−tu(t). Use MATLAB to find Y(ω).

Answer: Y
j

( )w
w

=
+

+
2

1
4

Example 5.13

Use MATLAB to find the inverse Fourier transform of

	
X

j
j

( )w
w
w

=
+
2

1

Solution

The following MATLAB script is used to find the inverse of X(ω).

syms  X  x  w
X = 2*j*w/( 1 + j*w);
x = ifourier(X)
pretty(x)

This returns

x =
((4*pi*dirac(x))/exp(x) - (4*pi*heaviside(x))/exp(x))/(2*pi)
 4 PI exp(-x) dirac(x) - 4 PI exp(-x) heaviside(x)
 -------------------------------------------------
                         2 PI

From this, we get

	 x t e t e u tt t( ) ( ) ( )= -- -2 2d

Practice Problem 5.13  Use MATLAB to find the inverse Fourier transform of
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Answer: 1/(2π)

Example 5.14

Consider a system with transfer function

	
H s

s
s s s s

s j( ) ,=
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2

4 3 2 w

Use MATLAB to obtain the plot of H(ω).
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Solution

The MATLAB script is as follows. Running the script results in the plot shown in 
Figure 5.19.

num = [100 0 0];
den = [ 1  25  50  400  6000];
w = 0.1:0.1:100
H = freqs(num, den,w);
mag =abs(H);
phase = angle(H)*180/pi   % converts phase to degrees
subplot(2,1,1)
 plot(w/(2*pi), mag)
  xlabel(‘Frequency (Hz)’)
  ylabel(‘Magnitude’)
subplot(2,1,2)
 plot(w/(2*pi), phase)
  xlabel(‘Frequency (Hz)’)
ylabel(‘Phase (deg)’)

Practice Problem 5.14  Use MATLAB to plot the frequency response to the trans-
fer function

	
H s

s s s
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+ + +
1

7 14 83 2

Answer: See Figure 5.20.
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FIGURE 5.19  For Example 5.14.
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5.9  SUMMARY

	 1.	The Fourier transform is defined as

	

X x t x t e dtj tw w( ) = ( )éë ùû = ( )
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		  It converts a nonperiodic signal x(t) into a transform X(ω).
	 2.	The inverse Fourier transform of X(ω) is defined as
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	 3.	The magnitude |X(ω)| plotted against ω is known as the magnitude spectrum of 
x(t), while the plot of |X(ω)|2 against ω is known as the energy spectrum. The 
angle of X(ω) plotted against ω is known as the phase spectrum.

	 4.	Common Fourier transform properties and pairs are in Tables 5.1 and 5.2 
respectively.

	 5.	 If H(ω) is the transfer function of a system, the output Y(ω) can be obtained 
from the input X(ω) using

	 Y H X( ) ( ) ( )w w w=
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FIGURE 5.20  For Practice Problem 5.14.
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	 6.	Parseval’s theorem provides the energy relationship between a signal x(t) and 
its Fourier transform X(ω). The 1 − Ω energy is

	

E x t dt X d1
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w w

	 7.	Applications of the Fourier transform include circuit analysis, AM, and sam-
pling. Applying the Fourier transform approach to circuit analysis involves 
transforming the excitation and circuit elements into the frequency-domain, 
solving for the unknown response, and transforming the response to the time-
domain using the inverse Fourier transform. For AM, the modulating signal 
is used to control the amplitude of the carrier. For sampling application, we 
found that no information is lost in sampling if the sampling frequency is equal 
to at least twice the Nyquist rate.

	 8.	 If x(t) = 0 for t ≤ 0, we can obtain the Fourier transform of signal x(t) from the 
one-sided Laplace transform X(s) of x(t) by replacing s with jω.

	 9.	MATLAB commands can be used to find the Fourier transform of a signal or 
its inverse.

REVIEW QUESTIONS

	 5.1	 The Fourier transform of x(t) is called the spectrum of x(t).
	 (a)	 True, (b) false
	 5.2	 The Fourier transform and the Laplace transform of δ(t) are the same.
	 (a)	 True, (b) false.
	 5.3	 Which of these functions is not Fourier transformable?
	 (a)	 etu(−t), (b) te−3tu(t), (c) 1/t, (d) |t|u(t)
	 5.4	 If x(t) = 2δ(t) and y(t) = dx/dt, then Y(ω) is
	 (a)	 2δ′(ω), (b) 2δ(ω), (c) 2jω, (d) 2/jω

	 5.5	 The inverse Fourier transform of e

j

j-

+

w

w3
 is

	 (a)	 e−3t, (b) e−3t u(t − 1), (c) e−3 (t − 1), (d) e−3(t − 1)u(t − 1)

	 5.6	 The property that relates e X t Xj t
o

w w w0 ( ) ( )Û -  is
	 (a)	� Time shift, (b) frequency shift, (c) time differentiation, (d) frequency 

differentiation.

	 5.7	 Evaluating the integral 
8 2

4 2

d w
w

w( )-
+

-¥

¥

ò d  gives

	 (a)	 0, (b) 1 (c) 2, (d) ∞
	 5.8	� A unit step current is applied through a 1 H inductor with no initial current. 

The voltage across the inductor is
	 (a)	 u(t), (b) sgn(t), (c) e−tu(t), (d) δ(t)
	 5.9	 The total energy of a signal is independent of its phase spectrum.
	 (a)	 True, (b) false
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5.10	 The MATLAB command for finding the inverse Fourier transform is
	 (a)	 invfourier, (b) ifourier, (c) fourierinv, (d) fourier

Answers: 5.1a, 5.2a, 5.3c,5.4 c,5.5d, 5.6b, 5.7b, 5.8d, 5.9b, 5.10b

PROBLEMS

Sections 5.2 and 5.3—Definition of the Fourier 
Transform and Properties of Fourier Transform

	 5.1	 Find the Fourier transform of

	

x t

t

t

t
( )

,

,

,

,

=

< <
< <

- < <

ì

í
ï
ï

î
ï
ï

1 0 1

0 1 2

1 2 3

0 otherwise

	 5.2	 Obtain the Fourier transforms of the following signals:

	 (a)	 x t

t

t

t
1

1 2 1

0 1 1

1 1 2

0

( )

,

,

,

,

=

- < < -
- < <
< <

ì

í
ï
ï

î
ï
ï otherwise

	 (b)	 x t

t

t

t
2

1 2 1

0 1 1

1 1 2

0

( )

,

,

,

,

=

- - < < -
- < <

< <

ì

í
ï
ï

î
ï
ï otherwise

	 5.3	 Calculate the Fourier transforms of the signals in Figure 5.21.
	 5.4	 Compute the Fourier transform of the signal in Figure 5.22.
	 5.5	 Find the Fourier transform of the signal shown in Figure 5.23.

y(t)

1

–1

t10–1

(b)

x(t)

1

–1

0 2 t

(a)

1

FIGURE 5.21  For Problem 5.3.
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5.6	� Using the properties of the Fourier transform, determine the Fourier transform 
of these signals:

	 (a)	 x(t) = sin(2t)u(t)
	 (b)	 y(t) = e−tcos(3t)u(t)
	 (c)	 z(t) = te−2tu(t)
5.7	 Verify that

	 (a)	 cos ( )w w pdtd t=
-¥

¥

ò 2

	 (b)	 j
e d to o

j t
o

2
d w w d w w w ww( ) ( ) sin( )+ - -éë ùû =

-¥

¥

ò
5.8	 Find the Fourier transform of the following signals:
	 (a)	 x1(t) = e−3tsin10tu(t)
	 (b)	 x2(t) = e−4tcos10tu(t)
5.9	� (a) Find the Fourier transform of x(t) = 2cos(ωot + θ)
	� (b)	� Use the result in part (a) to derive the Fourier transform of y(t) = 

2cos(100πt−π/4).
5.10	� Given that F F( ) [ ( )]w = f t , prove the following results using the definition of 

Fourier transform

	 (a)	 F Ff t t eo
j to-( )éë ùû = ( )- w w

	 (b)	 F F
df t

dt
j

( )é

ë
ê
ê

ù

û
ú
ú

= ( )w w

y(t)

1

–1

t1–1 0

FIGURE 5.22  For Problem 5.4.

y(t)

2

t1–1 0

FIGURE 5.23  For Problem 5.5.
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	 (c)	 F F[ ( )] ( )f t- = -w

	 (d)	 F Ftf t j
d

d
( )éë ùû = ( )

w
w

5.11	 A signal has Fourier transform

	
X

j

j
( )w w

w w
= +

- + +
5

2 12

		  Determine the Fourier transform of these signals:
	 (a)	 y(t) = x(2t − 5)
	 (b)	 y(t) = tx(t)
	 (c)	 y(t) = x(t)sin2t

	 (d)	 y t
d x t

dt
( )

( )=
2

2

5.12	 A signal f(t) has a Fourier transform given by

	
F ( )

( )w w
w w

= +
- +
5 1

8 62

j

j

		  Without finding f(t), find the Fourier transform of the following:
	 (a)	 f(t − 3)
	 (b)	 f(4t)
	 (c)	 e−j2tf(t)
	 (d)	 f(−2t)
5.13	 The Fourier transform of a signal x(t) is

	
X

j
( ) ( )w

w
pd w= +2

		  Derive the Fourier transform of the following signals:
	 (a)	 x1(t) = 4x(2t−1)
	 (b)	 x2(t) = x(t−2)sint

	 (c)	 x t
d

dt
x t3( ) ( )=

	 (d)	 x4(t) = tx(t)
5.14	 Obtain the Fourier transform of each of the following signals:
	 (a)	 x(t) = 4cos2t + 2δ(t)
	 (b)	 y(t) = 4sin2t−2sin2(t−1)−2sin2(t + 1)
5.15	 If X(ω) is the Fourier transform of x(t), show that

	 x t a x t a X a( ) ( ) ( )cos+ + - Û 2 w w

5.16	� Use the convolution property to derive the Fourier transform of the time-
domain product y(t) = sin2t ⋅ u(t)
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5.17	� Let a signal x(t) have the Fourier transformX(ω) shown in Figure 5.24. Without 
computing x(t), sketch Y(ω) when

	 (a)	 y(t) = x(2t)
	 (b)	 y(t) = x(t/4)
	 (c)	 y(t) = x(t)cos2t
	 (d)	 y(t) = x(t)sin2t
5.18	 Find the Fourier transform of the following signals:
	 (a)	 x(t) = δ(t−2) + δ(t−1) + δ(t + 1) + δ(t + 2)
	 (b)	 y(t) = 4te−tu(t)
	 (c)	 z(t) = 2e−tsin(4t)u(t)
5.19	 Verify the Fourier transform pairs:

	
te u t

a j
aat- Þ

+
>( )

( )
,

1
02w

5.20	 Verify the following identities:

	 (a)	 X x t dt( ) ( )0 =
-¥

¥

ò
	 (b)	 x X d( ) ( )0

1
2

=
-¥

¥

òp
w w

5.21	� (a)	� A signal x(t) has the equivalent bandwidth B and equivalent duration T 
defined as

	
T

x t dt

x
B

X d

X
= =-¥

¥

-¥

¥

ò ò( )

( )
,

( )

( )0 0

w w

		  Show that BT = 2π.
	 (b)	 Determine the equivalent bandwidth of (i) Π(t/τ), (ii) Λ(t/τ).

X(ω)

2

–2 –1 0 1 2 ω

1

FIGURE 5.24  For Problem 5.17.
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5.22	 If X x t( ) [ ( )]w = F  and a and b are constants, prove the following identities:

	 (a)	 F x
t

a
b a e Xjab+æ

è
ç

ö
ø
÷

é

ë
ê

ù

û
ú = ( )w w

	 (b)	 F[ ( ) ( )] ( )x t t a X a e j ad w- = -

	 (c)	 F x t
t

a
b a e Xjab( ) -æ

è
ç

ö
ø
÷

é

ë
ê

ù

û
ú = ( )-* d ww

5.23	 Let x(t) be given by x t
t t

( )
,

,
=

£ £ì
í
î

0 1

0 otherwise

	 (a)	Sketch x(t). (b) Obtain X(ω) by using differentiation property.
5.24	 (a) If x(t) is real and even, show that X(ω) is real and even.
	 (b)	Give an example for part (a).
5.25	 If x(t) and y(t) are two signals with Fourier transforms X(ω) and Y(ω), show that

	

x t y t dt X Y d( ) * ( ) ( ) * ( )
-¥

¥

-¥

¥

ò ò= 1
2p

w w w

5.26	 Consider X(ω) as the Fourier transform of x(t) in Figure 5.25. Evaluate
	 (a)	 X(0)

	 (b)	 X d( )w w
-¥

¥

ò

	 (c)	 X d( )w w
2

-¥

¥

ò
5.27	 Evaluate the Fourier transform of

	
x t

t t
( )

sin ,

,
=

< <ì
í
î

0 2

0

p
otherwise

x(t)

20

–1–2

10

t210

FIGURE 5.25  For Problem 5.26.
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Section 5.4—Inverse Fourier Transform

5.28	 Find x(t) for each of the following:

	 (a)	 X
j

( )
( )w pd w

w
= -

+
4 1

2

	 (b)	 X
j

( ) ( )w pd w
w

= -4
2

	 (c)	 X(ω) = 10sinc(4ω)
5.29	 Find the signal corresponding to each of the following Fourier transforms:

	 (a)	 X
j

j
( )w w

w
=

+
2

1
	 (b)	 Y(ω) = 10e−|ω|

	 (c)	 Z
j

j
( )w w

w w
=

- + +2 5 6
5.30	 Determine the inverse Fourier transform of the signal in Figure 5.26.

Section 5.5—Applications

5.31	 The transfer function of a system is

	
H

j
( )w

w
=

+
10

2

		  Determine the response y(t) for the following inputs:
	 (a)	 x(t) = 5cos(2t)
	 (b)	 x(t) = δ(t)
	 (c)	 x(t) = e−4tu(t)
5.32	 A signal x(t) is passed through a system as shown in Figure 5.27.
	 (a)	 Find the transfer function H(ω).
	 (b)	 If x(t) = cos(t), find y(t).
	 (c)	 If x(t) = e−3tu(t), find y(t).

X(ω)

10

5

–1–2 ω210

FIGURE 5.26  For Problem 5.30.
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5.33	 The transfer function of a circuit is

	
H

j
( )w

w
=

+
2

2

		  If the input signal to the circuit is vs(t) = e−4tu(t), find the output signal. Assume 
all initial conditions are zero.

5.34	� Suppose vs(t) = u(t) for t > 0. Determine i(t) in the circuit of Figure 5.28 using 
Fourier transform.

5.35	 Use Fourier transform to find i(t) in the circuit of Figure 5.29 if vs(t) = 10e−2tu(t).
5.36	 Find the voltage vo(t) in the circuit of Figure 5.30. Let is(t) = 8e−tu(t) A.
5.37	 For the circuit in Figure 5.31, find the transfer function H(ω) = Vo(ω)/Vi(ω).
5.38	 Obtain the response vo(t) of the circuit in Figure 5.32, where vs(t) = e−2tu(t) V.
5.39	� Refer to the filter shown in Figure 5.33. Find the transfer function and deter-

mine the type of filter.
5.40	 A continuous-time linear system is described by

	

dy t

dt
y t x t

( )
( ) ( )+ =3

		  Find the output y(t) due to the input x(t) = e−2tu(t).

x(t) y(t)h(t) = e–t u(t) + δ(t)

FIGURE 5.27  For Problem 5.32.

1 Ω

i

vs 1 H 
+

_

FIGURE 5.28  For Problem 5.34.

i

+

_

2 Ω

2 Ω 1 H
vs

FIGURE 5.29  For Problem 5.35.
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+

1/2 F

–

2 Ω

1 Ωis vo

FIGURE 5.30  For Problem 5.36.

+

8 kΩ

–

+

–

1 mF

vi vo

FIGURE 5.31  For Problem 5.37.

1 H

+

vo(t)

–

+

vi(t)
4 Ω

–

FIGURE 5.32  For Problem 5.38.
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5.41	 Determine the transfer function of the linear system characterized by

	

d y t

dt

dy t

dt
y t

dx t

dt
x t

2

3 5 6
( ) ( )

( )
( )

( )+ + = +

		  and find its impulse response.
5.42	 Find the response of a system described by

	

dy t

dt
y t x t x t e u tt( )
( ) ( ), ( ) ( )+ = = -2

		  using the Fourier transform.
5.43	� In a system, the input signal x(t) is amplitude modulated by m(t) = 2 + cosωot. 

The response y(t) = m(t)x(t). Find Y(ω) in terms of X(ω).
5.44	 In a communication system, two signals

	 x t t x t t1 2100 2 400( ) cos( ) ( ) cos( )= =p pand

		  are multiplied to give x3(t) = x1(t)x2(t). Sketch the frequency spectra of 
x1(t), x2(t), and x3(t).

5.45	 Determine the Nyquist rates for these signals:
	 (a)	 x(t) = 10cos(60πt)
	 (b)	 x(t) = 3cos(40πt) + 2sin(50πt)
5.46	� A signal x(t) is passed through a low-pass filter. If the filter blocks frequencies 

above 6 Hz, find the output y(t) for the following cases:
	 (a)	 x(t) = 2−3cos(2πt) + 4sin(13πt) + 10cos(15πt)
	 (b)	 x(t) = 4−2sin2(4πt).

Section 5.6—Parseval’s Theorem

5.47	 Find the energy dissipated by the resistor in the circuit of Figure 5.34.
5.48	� Calculate the total energy of the signal whose magnitude spectrum is shown in 

Figure 5.35.

C

+

y(t)Rx(t)

+

–
–

FIGURE 5.33  For Problem 5.39.
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5.49	 If x(t) and X(ω) are Fourier transform pair and

	
X( )

, | |

, | |
w

w
w

=
<
>

ì
í
î

10 2

0 2

Let y t
d x t

dt
( )

( )=
2

2 . Find | ( ) |y t dt2

-¥

¥

ò .

Section 5.8—Computing with MATLAB®

5.50	 Use MATLAB to obtain the Fourier transform of the following signals:
	 (a)	 x(t) = texp(−t)u(t)
	 (b)	 y(t) = (e−2t−e−t)u(t)
	 (c)	 z(t) = δ(t + 1/2) + e−1u(t)
5.51	 Use MATLAB to computer the Fourier transform of

	 x t e t u tt( ) ( ) ( )= -10 42

		  Plot the magnitude |X(ω)|.

|X(ω)|

ω

10

4

4020100–10–20–40

FIGURE 5.35  For Problem 5.48.

2 Ω

10e–tu(t) V 1 H+
_

FIGURE 5.34  For Problem 5.47.
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5.52	 Use MATLAB to find the inverse Fourier transform of

	 (a)	 X
e

j

j

1
1

( )w
w

w

=
-

	 (b)	 X
j

2
1 2

( )
( )w d w

w
=

+

	 (c)	 X
j j

3
2 5

( )
( )

( )( )
w pd w

w w
=

+ +
5.53	 A system has the transfer function

	
H s

s s

s s s
s j( ) = + +

+ + +
=

2

3 2

1
2 10 16 8

w

		  Use MATLAB to plot the frequency response.
5.54	 Use MATLAB to plot the transfer function

	
H

j

j j
( )

( . )
( . )( . )

w w
w w

= +
+ +

100 1 0 01
1 0 02 1 0 05

5.55	 The three-pole Butterworth filter has the transfer function

	
H s

s s s
s jc

c c c

( ) ,=
+ + +

=w
w w w

w
3

3 2 2 32 2

		  Use MATLAB to sketch H(s) for ωc = 2π.
5.56	 Use MATLAB to plot the transfer function

	
H

j
( )

. .
w

w w
=

+ -
1

1 0 2 0 05 2
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6 Discrete Fourier 
Transform

To accomplish great things, we must not only act, but also dream; not only plan, but 
also believe.

—Anatole France

CAREER IN COMMUNICATIONS SYSTEMS

Cordless phone.

Communications systems apply the principles of signals and systems. A commu-
nication system is designed to convey information from a source (the transmitter) to 
a destination (a receiver) via a channel (the propagation medium). Communication 
engineers design systems for transmitting and receiving information. The informa-
tion can be in the form of voice, data, or video.

We live in the information age—news, weather, sports, shopping, financial, busi-
ness inventory, and other sources make information available to us almost instantly 
via communications systems. Some obvious examples of communication systems are 
the telephone network, mobile cellular telephones, radios, cable TV, fax, and radar.

The field of communications is perhaps the fastest growing area in electrical 
engineering. The merging of the communications field with computer technology in 
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recent years has led to digital data communication networks such as local area net-
works, metropolitan area networks, and broadband integrated services digital net-
works. For example, the Internet (the “information superhighway”) allows educators, 
business people, and others to send electronic mail from their computers worldwide, 
log onto remote databases, and transfer files.

A communication engineer designs systems that provide high-quality information 
services. The systems include hardware for generating, transmitting, and receiving 
information signals. More and more government agencies, academic departments, 
and businesses are demanding faster and more accurate transmission of information. 
To meet these needs, communication engineers are in high demand.

6.1  INTRODUCTION

In the previous chapters, we have discussed applying frequency-domain techniques 
to continuous-time signals and systems. In this and the next chapter, we consider 
frequency-domain analysis of discrete-time systems. Here, we specifically consider 
the Fourier analysis of discrete-time systems. Fourier analysis plays the same impor-
tant role in discrete-time systems as in continuous-time systems.

Our approach is similar to that used for continuous-time signals and systems. We 
first introduce the discrete-time Fourier transform (DTFT) and its properties. We 
then discuss discrete Fourier transform (DFT), and the fast Fourier transform (FFT), 
a fast method of computing the DFT. The DFT plays a vital role in signal processing 
for spectral, while FFT is the most commonly used Fourier analysis technique. The 
main advantage of DFT and FFT is that they are well suited for computation by a 
digital computer. We learn how to use MATLAB® to implement numerically the dis-
crete Fourier analysis covered in this chapter. We finally apply the concepts learned 
in the chapter to touch-tone telephone and windowing technique.

6.2  DISCRETE-TIME FOURIER TRANSFORM

In the previous chapter, we defined the Fourier transform of a continuous-time signal 
x(t) as

	

X x t e dtj t( ) ( )w w= -

-¥

¥

ò 	 (6.1)

By replacing the integral with summation, we obtain the discrete-time Fourier 
transform (DTFT) of x[n] as

	

X x n e j n

n

( ) [ ]W = - W

=-¥

¥

å 	 (6.2)

where we have used the uppercase omega (Ω) as the frequency variable to distin-
guish the continuous-time and discrete-time cases. X(Ω) is referred as the Fourier 
spectrum of x[n].
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If we introduce Ω + 2π in Equation 6.2, we find that

	 X X( ) ( ),W + = W - ¥ < W < ¥2p 	 (6.3)

since e−j2π = 1. This shows that X(Ω) is periodic. For this reason, X(Ω) can be expanded 
in a Fourier series. If we multiply both sides of Equation 6.2 by ejΩmdΩ and integrate, 
we obtain

	

X e d x n e e dj m j n

n

j m( ) [ ]W W =
é

ë
ê
ê

ù

û
ú
ú

WW

-

- W

=-¥

¥
W

-
ò åò
p

p

p

p

	 (6.4)

But we know that the integral of any sinusoidal signal is zero when it is integrated 
over a period. Hence,

	

x n e d
x n m n

m n
j m n

n

[ ]
[ ],

,
( )W -

-=-¥

¥

W =
=
¹

ì
í
îòå 2

0

p

p

p

	 (6.5)

That is, only one term in the summation in Equation 6.4 remains. Thus, Equation 6.4 
becomes

	

x n X e dj n[ ] ( )= W WW

-
ò1

2p
p

p

	 (6.6)

which is the inverse discrete-time Fourier transform (IDTFT).
From Equations 6.2 and 6.6, we have the discrete-time Fourier transform (DTFT) 

pair as

	

DFT: ( ) { [ ]} [ ]X F x n x n e
n

j nW W= =
=-¥

¥
-å 	 (6.7)

	

IDFT: [ ] { ( )} ( )x n F X X e dj n= =-

-
ò1 1

2
W W WW

p
p

p

	 (6.8)

where F{x[n]} denotes the DTFT of x[n]. The one-to-one relationship between x[n] 
and X(Ω) is symbolized as

	 x n X[ ] ( )DTFT¬ ®¾¾ W 	 (6.9)
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Since X(Ω) is periodic, the integral in Equation 6.8 can be evaluated over any interval 
of length 2π. For example,

	

x n X e dj n[ ] ( )= W WWò1
2

0

2

p

p

	 (6.10)

The sufficient condition for X(Ω) to exist (or to converge) is that x[n] is absolutely 
summable, that is,

	

| [ ] |x n
n

< ¥
=-¥

¥

å 	 (6.11)

We should keep in mind that although ω has units of radians/second, Ω has units of 
radians. Although x[n] is discrete, X(Ω) is a function of the continuous variable Ω.

Example 6.1

Given the discrete-time signal

	

x n

n

n

n

n

[ ]

,

,

,

,

,

=

= -
- =

=
=

ì

í

ï
ïï

î

ï
ï
ï

1 1

2 0

0 1

3 2

0 otherwise

Find the discrete-time Fourier transform.

Solution

Since x[n] has few nonzero terms, the finite sum becomes a sum of few terms.

	

X x n e

e e e e

e e

j n

n

j j j j

j j

( ) [ ]W =

= - + +

= - +

- W

=-¥

¥

W W - W

W - W

å
2 0 3

2 3

0 2

2

Practice Problem 6.1  Find the DTFT of the signal

	

x n

n

n

n

n

[ ]

,

,

,

,

,

=

= -
=
=

- =

ì

í

ï
ïï

î

ï
ï
ï

2 2

3 0

1 1

1 2

0 otherwise

Answer: 2ej2Ω + 3 + e−jΩ−e−j2Ω
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Example 6.2

Find the DTFT of the discrete-time signal

	 (a)	 x[n] = δ[n]

	 (b)	 x n
a n mn

[ ]
,

,
=

£ £ì
í
ï

îï

0

0 otherwise

where a is a constant.

Solution

To find the DTFT of x[n], we apply Equation 6.7.

	 (a)	 X x n e n e ej n

n

j n

n

m
j n

n

( ) [ ] [ ]W = = = =- W

=-¥

¥
- W

=

- W

=

å åd
0 0

1

		  Thus,

	 d[ ]n DTFT¬ ®¾¾ 1

	 (b)	 X x n e a e aej n

n

n j n

n

m
j n

n

m

( ) [ ] ( )W = = =- W

=-¥

¥
- W

=

- W

=
å å å

0 0

	 (6.2.1)

		  But the geometric series sums as

	
q

q
q

qn

n

m m

=

+

å =
-

-
<

0

11
1

1, | | 	 (6.2.2)

		  with common factor q. By letting q = ae−jΩ, we combine Equations 6.2.1 and 
6.2.2 to get

	 X
ae

ae
a

j m

j( )
( )

, | |W =
-

-
<

- W +

- W
1

1
1

1

Practice Problem 6.2  Determine the DTFT of the discrete-time signal x[n] = 
anu[n], that is,

	 x n
a n

n

n

[ ]
,

,
=

³
<

ì
í
ï

îï

0

0 0

Answer: 
1

1
1

-
<- Wae

aj ,| |
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Example 6.3

Obtain the DTFT of the signal x[n] = a|n|, |a| < 1.

Solution
The Fourier transform is

	

X x n e a e

a e a e

j n

n

n j n

n

n j n

n

n j n

( ) [ ] | |W = =

= +

- W

=-¥

¥
- W

=-¥

¥

- W

=

¥
- - W

å å

å
0 nn=-¥

-

å
1

	

(6.3.1)

If we make the substitution m = −n in the second summation, we get

	
X ae aej n

n

j

m

m( ) ( ) ( )W = +- W

=

¥
W

=

¥

å å
0 1

	 (6.3.2)

Both summations are infinite geometric series

	
q q q

q
qn

n=

¥

å = + + + =
-

<
0

21
1

1
1� , | | 	 (6.3.3)

The first series in Equation 6.3.2 starts from n = 0 and its summation is given 
by Equation 6.3.3. However, the second series starts from m = 1. We need to 
subtract 1 from both sides of Equation 6.3.3 so that

	
q q q

q
q

q
qn

n=

¥

å = + + =
-

- =
-

<
1

2 1
1

1
1

1� , | | 	 (6.3.4)

Hence, applying Equations 6.3.3 and 6.3.4 into Equation 6.3.2 gives

	
X

ae
ae

ae
a

a aj

j

j( )
cos

W =
-

+
-

=
-

- W +- W

W

W
1

1 1
1

1 2

2

2 	 (6.3.5)

Practice Problem 6.3  Find the DTFT of an u[−(n + 1)].

Answer: 
1

1
1

ae
aj- W -

<, | |

Example 6.4

Obtain the DTFT of the constant Signal x[n] for all n. That is,

	 x n n[ ] , , , ,= = ± ±1 0 1 2 …
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Solution

	
X x n e ejn

n

jn

n

( ) [ ] ( )W = =- W

=-¥

¥
- W

=-¥

¥

å å 1 	 (6.4.1)

By expanding the frequency-domain train of impulse delta function into Fourier 
series, we can show that

	
d w w

w
p

w
w( ) ,- = =

=-¥

¥
-

=-¥

¥

å ån e T
n

jnT

n

0
0

0
0

1 20

or

	
e njn

n n

- W

=-¥

¥

=-¥

¥

= W -å å2 2p d p( ) 	 (6.4.2)

where we have used Ω = T0ω and the property d d( )
| |

( ).at
a

t=
1

 Substituting 

Equation 6.4.2 in Equation 6.4.1 leads the DTFT pair

	 x n n n
n

[ ] ( )= « W -
=-¥

¥

å1 2 2for all p d p

Practice Problem 6.4  Obtain the DTFT of

	 x n e j n[ ] = W0

Answer: 2 2p d p( )W - W -
=-¥

¥

å o

k

k

6.3  PROPERTIES OF DTFT

The discrete-time Fourier transform has some properties similar to those of the 
continuous-time Fourier transform. For each property, we shall state it and derive it, 
and then illustrate with some examples.

6.3.1 L inearity

The linearity property of the DTFT states that if

	 x n X1[ ] ( )DTFT
1¬ ®¾¾ W
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and

	 x n X2[ ] ( )DTFT
2¬ ®¾¾ W

then

	
ax n bx n aX bX1 2 1 2[ ] [ ] ( ) ( )+ ¬ ®¾¾ +DTFT W W 	 (6.12)

where a and b are constants. The proof is trivial.
Let us apply the linearity property to find the DTFT of the sinusoidal sequence

	 x n n[ ] cos , | |= W W £0 0 p 	 (6.13)

Using Euler’s formula,

	 cosW = +( )W - W
0

1
2

0 0n e ej n j n

Applying the result in Practice Problem 6.4 and the linearity property,

	

X k k
k

( ) ( ) ( )W = W - W - + W + W -
=-¥

¥

å2 2 20 0p d p d p
	 (6.14)

that is,

	

cos ( ) ( )W ¬ ®¾¾ W - W - + W + W -
=-¥

¥

å0 0 02 2 2n k k
k

DTFT p d p d p
 
	 (6.15)

6.3.2 T ime Shifting and Frequency Shifting

A delay or advance in the time domain results in a phase shift in the frequency 
domain. That is, if

	 x n X[ ] ( )DTFT¬ ®¾¾ W

then

	
x n n e Xj n[ ] ( )- ¬ ®¾¾ -

0
0DTFT W W 	 (6.16)

This property can be proved using Equation 6.7.

	

F x n n x n n e j n

n

{ [ ]} [ ]- = - - W

=-¥

¥

å0 0 	 (6.17)
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Let n − n0 = k on the right side of this equation so that n = k + n0.

	

F x n n x k e e x k e

e

j k n j n

n

j k

n

j

{ [ ]} [ ] [ ]( )- = =

=

- W + - W

=-¥

¥
- W

=-¥

¥

- W

å å0
0 0

nn X0 ( )W

	

(6.18)

For example, suppose we want to obtain the DTFT of the sequence x[n] − x[n − 1]. 
Using the time-shifting property,

	 x n x n e Xj[ ] [ ] ( ) ( )- - ¬ ®¾¾ - W- W1 1DTFT 	 (6.19)

The dual property is the frequency shifting property, which states that

	
x n e Xj n[ ] ( )W W W0

0
DTFT¬ ®¾¾ - 	 (6.20)

This can be derived by using Equation 6.7.

	

x n e x n e e x n e Xj n
DTFT

n

j n j n

n

j[ ] [ ] [ ] (( )W W W W W W0 0 0« = =
¥

¥
-

¥

¥
- -å å

=- =-

-- W0 ) 	 (6.21)

From this, it follows that

	 x n e Xj n[ ] ( )- ¬ ®¾¾ +W W W0
0

DTFT 	 (6.22)

Combining Equations 6.19 and 6.21, we get

	
x n n X X[ ]cos ( ) ( )W ¬ ®¾¾ W - W + W + Wéë ùû0 0 0

1
2

DTFT 	 (6.23)

which is the modulation property.

6.3.3 T ime Reversal and Conjugation

If x n X[ ] ( )DTFT¬ ®¾¾ W , then

	
x n X[ ] ( )- ¬ ®¾¾ -DTFT W 	 (6.24)
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We can prove this using Equation 6.7.

	

F x n x n e j n

n

{ [ ]} [ ]- = - - W

=-¥

¥

å
If we let –n = k, then

	

F x n x k e x k e Xj k

n

j k

n

{ [ ]} [ ] [ ] ( )( )- = = = -WW

=-¥

¥
- -W

=-¥

¥

å å 	 (6.25)

A related property is the conjugation of x[n]. That is,

	
x n X*[ ] *( )DTFT¬ ®¾¾ -W 	 (6.26)

where * denotes the complex conjugate.

6.3.4 T ime Scaling

Time scaling for discrete-time signal is different from time scaling for continuous-
time signal. We recall if X(ω) is the Fourier transform of continuous-time signal 
x(t), then

	
F x at

a
X

a
[ ( )]

| |
= æ

è
ç

ö
ø
÷

1 w
	 (6.27)

In the case of discrete-time signals, x[an] is not a sequence if a is not an integer. To 
derive a result that closely parallels Equation 6.27, let k be a positive integer. We 
define the signal

	
x n

x n k x m n km m

n
k( )[ ]

[ ] [ ], ,

,
=

= = =/ if integer

if  is not a multip0 lle of k

ì
í
î

	 (6.28)

Since x(k)[n] is zero unless n is a multiple of k, the DTFT of x(k)[n] is given by

	

X x n e x mk ek k

n

j n
k

m

j mk
( ) ( ) ( )( ) [ ] [ ]W = =

=-¥

¥
- W

=-¥

¥
- Wå å

Replacing x(k)[n] by x[m] gives

	

X x m e X kk

m

j k m
( )

( )( ) [ ] ( )W = = W
=-¥

¥
- Wå 	 (6.29)
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That is,

	
x n X kk( )[ ] ( )DTFT¬ ®¾¾ W 	 (6.30)

This shows that as the signal spreads out in time (k > 1), the corresponding Fourier 
transform is compressed. Since X(Ω) is periodic with period 2π, X(kΩ) is periodic 
with period 2π/k.

6.3.5  Frequency Differentiation

This property states that if x n X[ ] ( )DTFT¬ ®¾¾ W , then

	
nx n j

dX

d
[ ]

( )DTFT¬ ®¾¾ W
W

	 (6.31)

This can be proved by differentiating both sides of Equation 6.7 with respect to Ω. 
We obtain

	

dX

d
jnx n e j n

n

( )
[ ]

W
W

= - - W

=-¥

¥

å

Multiplying both sides by j gives

	

j
dX

d
nx n e j n

n

( )
[ ]

W
W

= - W

=-¥

¥

å 	 (6.32)

The right-hand side of this equation is the Fourier transform of nx[n]. Thus, Equation 6.31 
follows.

For example, suppose we know that

	
F a u n

e

e a
an

j

j[ ] | |{ } =
- ¢

<
W

W 1 	 (6.33)

Using Equation 6.31, we obtain

	

F na u n j
d

d

e

e a

ae

e a
n

j

j

j

j[ ]
( )

{ } =
W -

æ

è
ç

ö

ø
÷ =

-

W

W

W

W 2 	 (6.34)
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6.3.6 T ime and Frequency Convolution

If x n X1[ ] ( )DTFT
1¬ ®¾¾ W  and x n X2 2[ ] ( )DTFT¬ ®¾¾ W , then

	
x n x n X X1 2 1 2[ ]* [ ] ( ) ( )DTFT¬ ®¾¾ W W 	 (6.35)

To prove this, we substitute the definition of discrete-time convolution in Equation 6.7.

	

F x n x n x k x n k e
k

j n

n

1 2 1 2[ ]* [ ] [ ] [ ]{ } = -
æ

è
çç

ö

ø
÷÷

=-¥

¥
- W

=-¥

¥

åå 	 (6.36)

If we change the order of the summations, we obtain

	

F x n x n x k x n k e j n

nk

1 2 1 2[ ]* [ ] [ ] [ ]{ } = -
æ

è
çç

ö

ø
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- W

=-¥

¥

=-¥

¥

åå 	 (6.37)

Applying the time-shifting property,

	

x n k e e Xj n

n

i k
2 2[ ] ( )- = W- W

=-¥

¥
- Wå 	 (6.38)

Substituting this in Equation 6.37 yields

	

F x n x n x k e X X Xj k

k

1 2 1 2 1 2[ ]* [ ] [ ] ( ) ( ) ( ){ } = W = W W- W

=-¥

¥

å 	 (6.39)

This confirms Equation 6.35 for time-convolution.
For example, for a discrete-time system with input x[n], output y[n], and impulse 

response h[n], we obtain

	 Y H X( ) ( ) ( )W = W W 	 (6.40)

For frequency-convolution,

	
x n x n X X1 2 1 2

1
2

[ ] [ ] ( ) ( )DTFT¬ ®¾¾ Ä
p

W W 	 (6.41)
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This is also called the multiplication property since multiplication is involved in 
the time domain. This property states the multiplication of two signals in the time 
domain corresponds to periodic convolution in the frequency domain, scaled by the 
inverse of the period. Periodic convolution is defined by

	

X X X X d1 2 1 2

0

2

( ) ( ) ( ) ( )W Ä W = W -ò q q q
p

	 (6.42)

To prove Equation 6.41, we have by definition

	

F x n x n x n x n e x n X e dj n

n

jn{ [ ] [ ]} [ ] [ ] [ ] ( )1 2 1 2 2 1
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- W

=-¥

¥

e j n

n

	 (6.43)

Interchanging the order of integration and summation, we have

	

F x n x n X x n e dj n

n

{ [ ] [ ]} ( ) [ ] ( )
1 2 1
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2
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2

1
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ê
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p
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t

22
1

2
1
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2

2 1 2p
t t t

p

p

X X d X X( ) ( ) ( ) ( )ò W - = W Ä W

	

(6.44)

For example, we can derive the modulation property as a special case of the 
frequency-convolution.

	
F e x n X Xj nW W W W W W0

1
2

2 0 0[ ] ( ) ( ) ( )éë ùû = -éë ùû Ä = -
p

pd 	 (6.45)

6.3.7 A ccumulation

Accumulation (or summation) is the discrete-time counterpart of integration. The 
accumulation property can be stated as

	

x k
e

X X n
k

j

n

[ ] ( ) ( ) ( )
=-¥

¥

- W
=-¥

¥

å å¬ ®¾¾
-

W + W -DTFT 1
1

0 2p d p 	 (6.46)

The accumulation operation is defined by

	

y n x k
k

[ ] [ ]=
=-¥

¥

å 	 (6.47)
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This is equivalent to convolution according to Equation 2.25,

	

y n x k x n u n
k

[ ] [ ] [ ]* [ ]= =
=-¥

¥

å 	 (6.48)

Applying the frequency-convolution property,

	

Y X U X
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+ W -
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W- W
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å 2
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1
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e
Xj

n

p) ( )

	

(6.49)

6.3.8  Parseval’s Relation

This can be derived from the convolution property. The energy of a discrete-time 
signal x[n] is

	

E x nx

n

=
=-¥

¥

å | [ ] |2 	 (6.50)

We may regard this as the value of DTFT of the signal

	
g n x n x n x néë ùû = éë ùû = éë ùû éë ùû

2
* 	 (6.51)

Hence,

	
G X X( ) ( ) * ( )W = W -W1

2p
	 (6.52)

Thus,

	

E x n X dx

n

= = W Wòå
=-¥

¥

| [ ] | | ( ) |2 2

0

2
1

2p

p

	 (6.53)

This is Parseval’s relation. |X(Ω)|2 is the energy spectrum of the signal.
For convenience, Table 6.1 summarizes the properties of discrete-time Fourier 

transform, while Table 6.2 presents the transforms of some common transform pairs.
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Example 6.5

Determine the DTFT of x[n] = a|n|.

Solution

x[n] can be expressed in terms of anu[n] and a−nu[−n], that is,

	 a a u n a u n nn n n| | [ ] [ ] [ ]= + - -- d  	 (6.5.1)

We know from Table 6.2 that

	
F a u n

ae
e

e a
an

j

j

j[ ] | |{ } =
-

=
-

£- W

W

W
1

1
1	 (6.5.2)

Using the time reversal property,

	
F a u n

e
e a

an
j

j
-

- W

- W-{ } =
-

£[ ] | | 1 	 (6.5.3)

TABLE 6.1
Properties of Discrete-Time Fourier Transform (DTFT)

Property Time Domain Frequency Domain

1. Periodicity x[n] X(Ω + 2π) = X(Ω)

2. Linearity ax1[n] + bx2[n] aX1(Ω) + bX2(Ω)

3. Time-shifting x[n − k] e−jΩkX(Ω)

4. �Frequency-shifting (modulation) e xj nW [ ]0 n X(Ω − Ω0)

5. Time reversal x[−n] X(−Ω)

6. Conjugation x*[n] X*(−Ω)

7. Time scaling x(k)[i] X(kΩ)

8. Differentiation nx[n] j
dXW

W

9. Time-convolution x1[n]*x2[n] X1(Ω)X2(Ω)

10. Frequency-convolution x1[n]x2[n] 1
2

1 2p
X X( ) ( )W Ä W

11. Accumulation x k
n

[ ]
=-¥

¥

å 1

1
0 2

-
W + W -- W

=-¥

¥

åe
X X n

j
n

( ) ( ) ( )p d p

12. Parseval’s relation E x nx

n

=
=-¥

¥

å | [ ] |2 E X dx = W Wò1
2

2

0

2

p

p

| ( ) |
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Taking the DTFT of each term in Equation 6.5.1 and substituting Equations 6.5.2 
and 6.5.3 gives

	
F a

e
e a

e
e a

a
a a

an
j

j

j

j
| |

cos
| |{ } =

-
+

-
- =

-
- W +

£
W

W

- W

- W 1
1

1 2
1

2

2 	 (6.5.4)

Practice Problem 6.5  Determine the DTFT of the composite signal

	 x n a u n n an[ ] [ ] sin , | |= - W <0 1

Answer: 
1

1
2 20 0

-
+ W - W - - W + W -- W

=-¥

¥

åae
j k kj

k

p d p d p( ) ( )

TABLE 6.2
Common DTFT Pairs

Signal Type x[n] X(Ω)

1. Impulse δ[n] 1
2. Shifted impulse δ[n − k] e−jΩk

3. Unit step u[n]
1

1
2

-
+ W - W £- W

=-¥

¥

åe
n

j
n

p d p p( ), | |

4. Shifted unit step −u[−n − 1] 1

1
2

-
- W - W £- W

=-¥

¥

åe
n

j
n

p d p p( ), | |

5. DC signal 1, for all n 2 2p d p( )W -
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¥

å k
k

6. Gated function u[n] − u[n − k] sin( )
sin( )

( )/k
e j kW

W
- W -/

/
2
2

1 2

7. Exponential anu[n] 1

1
1

-
£- Wae

a
j

| |

8. Weighted exponential nanu[n] ae
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a

j

j

- W

- W-
£

( )
| |

1
1

2

(n + 1)anu[n]
1

1
1
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| |

-
£- Wae

a
j

9. Two-sided exponential a|n|
1

1 2
1

2

2

-
+ - W

<
a

a a
a
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| |

10. Complex sinusoid e j nW0 2 20p d p( )W - W -
=-¥

¥

å k
k

11. Cosine wave cos Ω0n 2 2 20 0p d p d p( ) ( )W - W - + W + W -
=-¥

¥

å k k
k

12. Sine wave sin Ω0n
p

d p d p
j

k k
k

( ) ( )W - W - - W + W -
=-¥

¥

å 0 02 2
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Example 6.6

Given the signal

	
x n

n
[ ]

, | |

,
=

£ì
í
î

1 2

0 otherwise
	 (6.6.1)

	 (a)	 Sketch x[n] and its DTFT X(Ω).
	 (b)	 Sketch the time-scaled signal x(2)[n] and its DTFT X(2)(Ω).

Solution
	 (a)	 The rectangular pulse is shown in Figure 6.1a. It is also known as 5-point 

rectangular window function. Its Fourier transform is

	

X x n e e Nj n

n

j n

n N

N

( ) [ ] ( )( ) ,
( )/

( )/

W = = =- W

=-¥

¥
- W

=- -

-

å å 1 5
1 2

1 2

	 (6.6.2)

		  This is a geometric sequence with factor e−jΩ. From Appendix A.10,

	
a

a a
a

ak

k M

N N M

=

+

å =
-
-

¹
1

1
1	 (6.6.3)

		  Applying this to Equation 6.6.2 yields

	

X
e e

e

e e ej N j N

j

j j N j N
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[( ) / ] [( ) / ] / ( ) (
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-

-
=

-- + W - W
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- W - W1 2 1 2 2 2
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/ // )

/ / /( )
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sin( . )

,

sin( .

2

2 2 2

2
0 5

5

2 5

W

- W - W W

( )
-

=
W

W
=

=

e e e

N
N

j j j

WW
W

)
sin( . )0 5

	

(6.6.4)

0
(a)

(b)
0

1

1

x[n] X(Ω)

x(2)[n] X(2)(Ω)=X(2Ω)

n –π π Ω

n

0

–π π Ω

5

5

0

FIGURE 6.1  For Example 6.6.
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		  The sequence in Equation 6.6.1 and its Fourier transform in Equation 6.6.4 
are sketched in Figure 6.1a. Notice that although x[n] is discrete, X(Ω) is 
continuous.

	 (b)	 Using the time-scaling property in Equation 6.30 and Equation 6.6.4, we 
obtain

	 X X( )( ) ( )
sin( )
sin( )

2 2
5

W = W =
W
W

		  Both the signal x(2)[n] and its DTFT X(2)(Ω) are sketched in Figure 6.1b. Notice 
that x(2)[n] is obtained from x[n] by placing k − 1 = 2 − 1 zeros between suc-
cessive values of the original signal x[n].

Practice Problem 6.6  Find the DTFT of the sequence shown in Figure 6.2.

Answer: 3 + 2cos 2Ω + 4cos Ω.

Example 6.7

Determine the Inverse of the Function

	
X

ae
aj( )

( )
, | |W =

-
<- W

1
1

12

Solution

From Table 6.2,

	
a u n

ae
an

j[ ] , | |DTFT 1
¬ ®¾¾

-
<- W1

1

The given function can be expressed as
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ae ae aej j j( )
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-

=
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ç

ö
ø
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æ
è
ç

ö
ø
÷- W - W - W

1
1

1
1

1
12

2

1
n

3

x[n]

FIGURE 6.2  For Practice Problem 6.5.
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By the convolution theorem,

	

x n a u n a u n a u k a u n k

a n a u n

n n k n k
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k

[ ] [ ]* [ ] [ ] [ ]

( ) [ ]
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Practice Problem 6.7  Given that h n u n x n u n
n n

[ ] [ ] [ ] [ ]= æ
è
ç

ö
ø
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è
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ö
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1
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1
3

and , find

	 y n h n u n[ ] = [ ] [ ]* .

Answer: 3
1
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ø
÷ - æ

è
ç

ö
ø
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n n

u n u n[ ] [ ]

6.4  DISCRETE FOURIER TRANSFORM

The discrete Fourier transform (DFT) may be regarded as a logical extension of 
the discrete-time Fourier transform (DTFT) covered earlier. By sampling the DTFT 
X(Ω) at uniformly spaced frequencies Ω = 2πk/N, where k = 0, 1, 2,…, N − 1, we 
can define the DFT of x[n]. Let x[n], n = 0, 1, 2,…, N − 1, be an N-point sequence. 
We define the DFT of x[n] as

	

X k x n e k Nj nk N

n

N

[ ] [ ] , , , , ,/= = --

=
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å 2

0

1

0 1 2 1p … 	 (6.54)

The discrete Fourier transform relates discrete-time sequence x[n], n = 0, 1, 2,…, 
N − 1, to the discrete-frequency sequence X[k], k = 0, 1, 2,…, N − 1. The discrete 
Fourier transform is defined by the pair

	

DFT: [ ] [ [ ]] [ ] /X k F x n x n e
n

N
j nk N= =

=
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	 (6.55)

	

IDFT: [ ] [ ] [ ] /x n F X k
N

X k e
k

N
j nk N= éë ùû =-

=

-

å1

0

1
21 p

	 (6.56)
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Equation 6.56 specifies the inverse DFT or IDFT. We use the notation

	 x n X k[ ] [ ]DFT¬ ®¾¾ 	 (6.57)

Note that the DFT X[k] as given in Equation 6.55 is a periodic sequence with 
period N. This should be expected since X[k] is a sampled version of the periodic 
DTFT X(Ω). Also, note that both DFT and the inverse DFT (IDFT) begin the sum-
mation from zero and end at N − 1 so that both are finite. Since DFT can be derived 
from DTFT, we would expect their properties to be similar. The properties of DFT 
are listed in Table 6.3.

Notice that items 6 and 7 in Table 6.3 involve circular convolution. The convolu-
tion of two discrete-time signals covered in Chapter 2

	

y n x n h n x k h n k
k

[ ] [ ]* [ ] [ ] [ ]= = -
=-¥

¥

å 	 (6.58)

may be regarded as linear convolution. Consider two sequences, x[n] and h[n], 
defined for n = 0, 1,…, N − 1, that is, they both have length N and zero values of n < 0 
and n ≥ N. The periodic or circular convolution is defined as

	

y n x n h n x k h n k
k

N

[ ] [ ] [ ] [ ] [ ]= Ä = -
=

-

å
0

1

	 (6.59)

TABLE 6.3
Properties of the DFT

Property Time Domain Frequency Domain

1. Linearity ax1[n] + bx2[n] aX1[k] + bX2[k]

2. Time-shifting x[n − m] e−j2πkmX(k)

3. Frequency-shifting (modulation) e x nj k n N- 2 0p / [ ] X(k − k0)

4. Time reversal x[−n] X(−k)

5. Conjugation x*[n] X*(−k)

6. Time-convolution x1[n] ⊗ x2[n] X1[k]X2[k]

7. Frequency-convolution x1[n]x2[n] 1
1 2

N
X k X k[ ] [ ]Ä

8. Parseval’s relation E x nx

n

N

=
=

-

å | [ ] |2

0

1

E
N

X kx

k

N

=
=

-

å1 2

0

1

| [ ] |
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It is often regarded as the evaluation of two signals around two concentric circles. 
Equation 6.59 is evaluated by writing the N values of x[n] equally spaced around an 
outer circle in a counterclockwise direction, while the N values of h[n] are equally 
spaced in a clockwise direction on an inner circle.

In general, X[k] is complex and it may be easier to express it in terms of its real 
part R[k] and imaginary part I[k], that is,

	
X k R k jX kéë ùû = éë ùû + éë ùû 	 (6.60)

where
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Example 6.8

Find the DFT of the sequence x[n] = {1, −2, 1, 3}.

Solution

We can find the DFT of x[n] by either directly using Equation 6.55 or indirectly 
using Equations 6.61 and 6.62.
x[0] = 1, x[1] = −2, x[2] = 1, and x[3] = 3. With N = 4, Equation 6.55 becomes
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(6.8.1)

The real part of this is
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Evaluating this for each k leads to
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The imaginary part of X[k] is
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Evaluating this for each value of k, we get
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From Equations 6.8.2 and 6.8.3, we obtain X[k] = R[k] + jI[k], that is,
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Practice Problem 6.8  Determine the IDFT of the X[k] obtained in Example 6.8.

Hint: Use Equation 6.56.

Answer: x[n] = [1,−2, 1, 3].

Example 6.9

Find the periodic convolution of the following two sequences:

	 x n h n[ ] = -éë ùû [ ] = -éë ùû1 0 2 3 3 1 2 1, , , , , ,and

Solution
N = 4 and we have a case similar to the previous example. Instead of using real 
and imaginary parts, we apply Equation 6.55 directly. From Equation 6.8.1,
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Similarly,

	

H h h h h
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Convolution in the time domain produces multiplication in the frequency domain, 
that is,

	 y n h n x n Y k H k X k[ ] [ ] [ ] [ ] ( ) ( )= Ä « =
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We now use inverse discrete Fourier transform (or IDFT) to find y[n] from Y[k].
From Equation 6.56,

	
y n F Y k

N
Y k e j nk N

k

N

[ ] [ ] [ ]= [ ] =-

=

-

å1 2

0

1
1 p /

Since N = 4, we have
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From this, we have y[n] = [2, 9, −7, 6].

Practice Problem 6.9  Repeat Example 6.9 for

	
x n h n n

n

[ ] = -éë ùû = æ
è
ç

ö
ø
÷ =0 1 2 3

1
2

0 1 2 3, , , [ ] , , , ,and

Answer: y[n] = [−0.875, 0.5, 2.125,−1.75].
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Example 6.10

Verify Parseval’s relation using the sequence x[n] = {1, −2, 1, 3}.

Solution
Using the given sequence directly, we get
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In Example 6.8, we obtained the DFT of the sequence as
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confirming Parseval’s relation.

Practice Problem 6.10  Repeat Example 6.10 for the sequence x[n] = [0, 1, 2, −3].

Answer: Ex = 14.

6.5  FAST FOURIER TRANSFORM

The number of complex computations required in calculating DFT is drastically 
reduced by an algorithm known as the fast Fourier transform (FFT). The develop-
ment of FFT, which dramatically reduces the number of computational operations, 
made DFT a very useful transform in many areas of applied science and technology. 
FFT was developed by James Cooley and John Tukey in 1965. Keep in mind that 
FFT is not a transform by itself; it is an algorithm—a fast computation of DFT.

For a discrete-time signal, we defined the N-point DFT and IDFT as

	

X k x n e k Nj nk N
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It is evident from Equation 6.63 that to compute each X[k] requires N complex mul-
tiplications and N − 1 complex additions. Since we have to evaluate X[k] for k = 0, 1, 
2,…, N − 1, the entire computation of DFT requires N2 complex multiplications and 
N(N − 1) complex additions. This becomes prohibitively time consuming for large N.
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The numbers of complex multiplications required for N-point DFT (N2) and FFT 
N

N
2

2log
æ
è
ç

ö
ø
÷ are compared in Table 6.4. We can see from the table that as N increases, 

the speed advantage of FFT becomes obvious. (For FFT computations, N need not 
be a power of 2.) The FFT algorithm is very useful in communications and digital 
signal processing.

Like inverse DFT (or IDFT), we also have inverse FTT (or IFFT). Although there 
are several variations of Tukey–Cooley algorithm on FFT, they can be grouped into 
two types: decimation in time and decimation in frequency. Discussion of these algo-
rithms is beyond the scope of this book. All that is needed as this stage is using FFT 
and IFFT in MATLAB.

6.6  COMPUTING WITH MATLAB®

MATLAB has in-built commands fft and ifft for finding respectively the fast Fourier 
transform and inverse fast Fourier transform of a discrete-time sequence. As we 
know, finding DFT is the same as finding FFT.

Example 6.11

A square wave is represented by the sequence x[n] defined as

	 x x x x0 1 2 3 1[ ] = [ ] = [ ] = [ ] =  and x x x x4 5 6 7 1[ ] = [ ] = [ ] = [ ] = -

Use MATLAB to find the FFT.

Solution

We use the following MATLAB script to find X[k].

x = [ 1 1 1 1 -1 -1 -1 -1];
X = fft(x)
stem(abs(X))

TABLE 6.4
Number of Multiplications Required in DFT and FFT

M N = 2m DFT FFT 

1 2 4 1

2 4 16 4

3 8 64 12

4 16 256 32

5 32 1,024 80

6 64 4,096 192

7 128 16,384 448

8 256 65,536 1,024

9 512 261,144 2,304

10 1,024 1,048,576 5,120
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This results in

X = [0 2 − j4.8284 0 2 − j0.8284 0 2 + j0.8284 0 2 + j4.8284]

The MATLAB command stem is used to plot the absolute value of the result, as 
shown in Figure 6.3. To ensure that the result is correct, we can find the IFFT of X.

X = [0 2-j*4.8284 0 2-j*0.8284 0 2+j*0.8284 0 2+j*4.8284]
x = ifft(X)

The result is the same as the given x[n].

Practice Problem 6.11  Find the FTT of the sequence x[n] = {1, −2, 1, 3}.

Answer: [3, j5, 1, −j5].

Example 6.12

Repeat Example 6.9 using MATLAB.

Solution

We find the FFT of sequences x[n] and h[n]. We multiply the results together and 
then find IFFT to get y[n]. The MATLAB for doing the convolution follows.

x = [ 1  0 -2 3]; 
h = [ 3  1  2 -1];
X = fft(x);
H = fft(h);
Y = X.*H;
y = ifft(Y)

This produces y[n] = [2, 9, −7, 6], which is what we got the hard way in Example 6.9.

Practice Problem 6.12  Repeat Practice Problem 6.9 using MATLAB.

Answer: y[n] = [−0.875, 0.5, 2.125,−1.75].

1
0

1

2

3

4

5

6

2 3 4 5 6 7 8

FIGURE 6.3  For Example 6.10.
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Example 6.13

Although MATLAB does not have a function for DTFT, we can use it to plot the 
Fourier spectrum X(Ω). In Practice Problem 6.2, the DTFT of the discrete-time 
signal x[n] = anu[n] is

	
X

ae j( )W =
- - W

1
1

Plot this for a = 0.8,

Solution

The necessary MATLAB script is shown below. The resulting plot of X(Ω) is in 
Figure 6.4.

a=0.8;
Omega= 0:0.01:2.0;
X =1./(1- a*exp(-j*Omega));
plot(Omega,abs(X));
xlabel(‘\Omega’)
ylabel(‘X(\Omega)’)

Practice Problem 6.13  Use MATLAB to plot the Fourier spectrum

	
X
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e a
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=
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Answer: See Figure 6.5.
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FIGURE 6.4  For Example 6.13.
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6.7  APPLICATIONS

We will consider some applications of the discrete Fourier transforms. Specifically, 
we consider touch-tone telephone and windowing technique.

6.7.1 T ouch-Tone Telephone

The touch-tone telephone uses signals of different frequencies to specify which but-
ton is being pushed. The keypad has 12 buttons arranged in four rows and three 
columns. The DTFT of a sampled signal can be used to identify these frequencies. 
Pushing of a button generates a sum of two sinusoids corresponding to its unique 
pair of frequencies. The higher frequency sinusoid indicates the column of the key, 
while the lower frequency sinusoid indicates the row of the key. Table 6.5 shows 
the DTFT frequencies for touch-tone signals sampled at 8192 Hz. For example, the 
digit 8 is represented by the signal

	 x n n n8 0 6535 1 0247[ ] sin( . ) sin( . )= + 	 (6.65)
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0
0 0.2 0.4 0.6 0.8

X(
Ω
)

Ω
1 1.2 1.4 1.6 1.8 2

100

FIGURE 6.5  For Practice Problem 6.13.

TABLE 6.5
DTFT Frequencies for Touch-Tone Signals

ωcolumn

ωrow 0.9273 1.0247 1.1328

0.5346 1 2 3

0.5906 4 5 6

0.6535 7 8 9

0.7217 0
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6.7.2 W indowing

Sampling a signal for storage in a computer requires that we limit the signal to a 
finite length. This truncation causes discontinuities at either end of the sampled 
signal. In other to minimize this effect called spectral leakage, the data samples can 
be multiplied by windows which approach zero smoothly at the beginning and end 
of the signal.

Windowing is a fundamental operation in digital signal processing and is implied 
in DFT development. It refers to the operation of multiplying a signal x[n] by a finite-
duration sequence w[n] to produce a finite-duration signal xw[n], that is,

	 x n x n w nw[ ] [ ] [ ]= 	 (6.66)

where
w[n] = 0 for n < 0 and n > N

This makes both the window sequence w[n] and the windowed sequence xw[n] to 
be of length N. A few examples of window sequences are as follows:
	 1.	Rectangular:
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	 2.	Hanning:
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	 3.	Hamming:
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	 4.	Barlett:
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	 5.	Blackman:
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The windowing technique is used in many applications. For example, it is used in 
Fourier analysis to decrease the size of the Gibbs overshoot and ripples. Windowing 
is also used in filter design. By using the windowing technique, we can obtain a filter 
that satisfies the design specs with fewer elements and less processing delay.
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Example 6.14

Compute the DTFT of the discrete sequence x[n] = 0.8nu[n]. Use N = 32 and 
compare the exact spectrum with the one obtained using the Hamming window.

Solution

From Table 6.2, the exact DTFT of u[n] is

	
X

ae
aj( ) | |W =

-
£- W

1
1

1

where a = 0.8. We use the following MATLAB code for computing X(Ω) and 
Hamming window.

a=0.8; N = 32;
n = 0:N-1
w = 0:0.01:pi; % values of Omega
fe = abs(1./(1 - a*exp(-j*w))); % exact DTFT
subplot(2,1,1)
  plot(w,fe)
  title(‘Exact spectrum’);
  xlabel(‘\Omega’); ylabel(‘Magnitude’);
   wh = 0.54 - 0.46*cos(2*pi*n’/(N-1)) %Hamming window
fh=abs((a.^n’.*wh)’*exp(-j*n’*w));
fhs = sum(fh,1); %sums columns of N x length(w) matrix fh
subplot(2,1,2)
   plot(w,fhs)
   title(‘Spectrum using Hamming window’);
  xlabel(‘\Omega’); ylabel(‘Magnitude’);

The exact spectrum and the spectrum obtained using Hamming window are 
shown in Figure 6.6.
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FIGURE 6.6  For Example 6.14.
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Practice Problem 6.14  Repeat Example 6.14 using Blackman window.

Answer: See Figure 6.7.

6.8  SUMMARY

	 1.	The discrete-time Fourier transform (DTFT) of a signal x[n] is given by

	

X x n e j n
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å

		  where the variable Ω has the units of radians.
	 2.	The inverse discrete-time Fourier transform (IDTFT) of X(Ω) is

	

x n X e dj n[ ] ( )= W WW

-
ò1

2p
p

p

	 3.	The properties of discrete-time Fourier transform are listed in Table 6.1, while 
Table 6.2 presents the transforms of some common transform pairs.
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FIGURE 6.7  For Practice Example 6.14.
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	 4.	The discrete Fourier transform (DFT) of a sequence x[n] of length N is given by

	

X k x n e j nk N
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å 2
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		  The properties of DFT are listed in Table 6.3.
	 5.	The inverse discrete Fourier transform (IDFT) is given by

	

x n
N

X k e j nk N
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	 6.	The fast Fourier transform (FTT) is an algorithm designed for efficient and 
fast machine computation of the DFT.

	 7.	MATLAB commands fft and ifft can be used respectively to find the fast 
Fourier transform and inverse fast Fourier transform of a discrete-time 
sequence.

	 8.	The two applications considered in this chapter are touch-tone telephone 
and windowing technique. The touch-tone telephone uses signals of different 
frequencies to specify which button is being pushed. When a discrete-time 
signal has an infinite length, we can terminate it by multiplying it by a window 
function.

REVIEW QUESTIONS

	 6.1	 The condition for signal x[n] to have DTFT is that x[n] is
	 (a)	 Integratable, (b) differentiable, (c) summable, (d) compressible.
	 6.2	 The DTFT of the discrete-time signal x[n] = 1, n = 0, ±1, ±2,…, does not exist.
	 (a)	 True, (b) False.
	 6.3	 Which of these is not convolution?

	 (a)	 x[n]*h[n], (b) x[n]h[n], (c) x k h n k
k

[ ] [ ]-
=-¥

¥

å , (d) h k x n k
k

[ ] [ ]-
=-¥

¥

å
	 6.4	 If X(Ω) is the DTFT of x[n], then the Fourier transform of x[−n] is
	 (a)	 X(Ω)e−jΩ, (b) X(Ω)ejΩ, (c) X(Ω − 1), (d) X(−Ω)
	 6.5	 The DFT is discrete but not periodic.
	 (a)	 True, (b) False.
	 6.6	� Given the following discrete-time sequence x[0] = 1, x[1] = −1, x[0] = 3, x[3] = 2, 

the value of X[0] is
	 (a)	 2 + j3, (b) 2 − j4, (c) 5, (d) none of the above.
	 6.7	� For a 4-point computation of DFT, how many complex multiplications are 

involved?
	 (a)	 4, (b) 8, (c) 16, (d) 32.
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6.8	 An N-point computation of DFT can be done by FFT provided N is even.
	 (a)	 True, (b) False.
6.9	 The MATLAB command for finding IDFT is
	 (a)	 fft, (b) ifft, (c) stem, (d) idft, (e) none of the above.
6.10	� Which of the following MATLAB command is not used for windowing 

technique?
	 (a)	 Hanning, (b) Hamming, (c) Blackman, (d) Bartlett.
Answers: 6.1c, 6.2a, 6.3b, 6.4d, 6.5b, 6.6c, 6.7c, 6.8b, 6.9b, 6.10a.

PROBLEMS

Sections 6.2 and 6.3—Discrete-Time Fourier 
Transform and Properties of DTFT

	 6.1	 (a) Show that X(Ω) is periodic with period 2π, that is, X(Ω + 2π) = X(Ω).

	 (b)	Specifically show that X
ae j( )W =

- - W
1

1
 is periodic.

	 6.2	 Find the DTFT of the signal shown in Figure 6.8.
	 6.3	 Determine the DTFT of the sequence x[n] shown in Figure 6.9.
	 6.4	 Compute the DTFT of the signals in Figure 6.10.
	 6.5	 Determine the DTFT X(Ω) for each of the following signals:
	 (a)	 x[n] = 0.8|n|

	 (b)	x[n] = d[n + k]−d[n−k]
	 (c)	 x[n] = 0.4ncos2nu[n]

–1 0 1 2 3 n

4

x[n]

FIGURE 6.8  For Problem 6.2.

x[n]

–2

–3

n1
1

2

3

2 3
–1–1–2–3 0

FIGURE 6.9  For Problem 6.3.
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6.6	 Find the DTFT of each of the following discrete-time signals:
	 (a)	 (0.5)nu[−n]
	 (b)	δ[n − 2] − δ[n + 2]
	 (c)	 (0.8)nu[n + 2]
6.7	 Obtain the DTFT of the following composite signals:
	 (a)	 x[n] = (0.6)nu[n]−sin2n
	 (b)	y[n] = 2nu[−n] + cos2αn
6.8	 Use Tables 6.1 and 6.2 to find the DTFT of

	 x n a u n a u nn n[ ] [ ] [ ]= - --

6.9	 A certain signal x[n] has DTFT given by

	
X

e

e a

j

j( )W =
+

W

W

		  where a is a constant. Find DTFT Y(Ω) of the following:
	 (a)	 y[n] = x[n−2]
	 (b)	y[n] = x[n]ej4n

	 (c)	 y[n] = x[n]sin 2n
	 (d)	y[n] = x[n]* x[n]
6.10	 The DTFT of a signal x[n] is

	
X

e j( )W =
+ - W

2
3

		  Find the DTFT of the following signals:
	 (a)	 y[n] = x[−n]
	 (b)	z[n] = nx[n]
	 (c)	 w[n] = x[n] + x[n−1]
	 (d)	v[n] = x[n]cos(nπ)

1

0 1 2 3 4 5
(a)

n

2

3

x1[n]

2

2 3 n0 1

4

6
8

(b)

x2[n]

FIGURE 6.10  For Problems 6.4 and 6.24.



305Discrete Fourier Transform

6.11	� Let X(Ω) be the DTFT of x[n] = (0.8)nu[n]. Find the signal corresponding to the 
following spectra:

	 (a)	 Y(Ω) = X(−Ω)
	 (b)	Z(Ω) = X(Ω−π)
	 (c)	 W(Ω) = jX′(Ω)
6.12	 Obtain the IDTFT of each of the following Fourier transforms:
	 (a)	 X(Ω) = 10sin(4Ω)
	 (b)	X(Ω) = 2cos2Ω
6.13	� Determine the signal x[n] corresponding to each of the following Fourier 

transforms:
	 (a)	 X(Ω) = 1 + 3e−j2Ω−2ej4Ω + ej5Ω

	 (b)	 X
e

e

j

j
( )W =

-

-

- W

- W

1
2

1
1
2

	 (c)	 X(Ω) = 3π[δ(Ω−2) + δ(Ω + 2)]
6.14	� Obtain the IDTFT x[n] of the rectangular pulse spectrum X(Ω) shown in 

Figure 6.11.

6.15	 Let X( )
,

,
W =

- < W <ì
í
î

1

0

p p
otherwise

. Use this function to verify Parseval’s relation.

6.16	 Use Equation 6.8 to determine the IDTFT of each of the spectra in Figure 6.12.

X(Ω)

Ω

2

0 π/2–π/2

FIGURE 6.11  For Problem 6.14.

2

1

–2 210
(a) (b)

0–1

X(Ω) X(Ω)

Ω Ω

cosΩ

–π/2 π/2

FIGURE 6.12  For Problem 6.16.
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6.17	 Show that if x[n]↔X(Ω), then

	 x n k x n k jX k[ ] [ ] ( )sin+ - - « W W2

6.18	 Find the convolution y[n] = h[n]* x[n] of the following pairs of signals:

	 (a)	 x n u n h n
n

[ ] [ ], [ ]= æ
è
ç

ö
ø
÷ =1

4
1

	 (b)	 x n u n h n n n
n

[ ] [ ], [ ] [ ] [ ]= æ
è
ç

ö
ø
÷ = + -1

3
1d d

	 (c)	 x n u n h n u n
n n

[ ] [ ], [ ] [ ]= æ
è
ç

ö
ø
÷ = æ

è
ç

ö
ø
÷

1
2

1
3

Sections 6.4 and 6.5—Discrete Fourier 
Transform and Fast Fourier Transform

6.19	 Find the DFT of the sequence x[n] = an.
6.20	 Prove the following DFT properties:

	 (a)	 X x n
n

N

[ ] [ ]0
0

1

=
=

-

å

	 (b)	 X N x nn

n

N

[ ] ( ) [ ]/2 1
0

1

= -
=

-

å
6.21	 Find the DFT of the following sequences:
	 (a)	  x[n] = {0, 1, 2, 3}
	 (b)	y[n] = {1, 1, −1, −1, 1, 1, −1, −1}
6.22	 Calculate the DFT of the following discrete-time signals:
	 (a)	 x[0] = −1,  x[1] = 1,   x[2] = 0,    x[3] = 2
	 (b)	x[0] = 1,  x[1] = 2,  x[2] = 3,  x[3] = −1
6.23	 Show that

	 (a)	 x n
km

N
X m k X m k[ ]cos ( ) ( )

2 1
2

pæ
è
ç

ö
ø
÷¬ ®¾ - + +éë ùû

	 (b)	x n
km

N j
X m k X m k[ ]sin ( ) ( )

2 1
2

pæ
è
ç

ö
ø
÷¬ ®¾ - - +éë ùû

6.24	 Determine the DFT of the signals in Figure 6.10.
6.25	 The DFT of a signal x[n] is

	
X X j X j X j X j0 1 1 1 2 2 1 3 1 4 1 2( ) = ( ) = + ( ) = - ( ) = + ( ) = -, , , ,

		  Compute x[n].
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6.26	 Given that X[k] = DFT{x[n]}, show that

	
x n

N
X k[ ] { *[ ]} *= ( )1

DFT

		  where * denotes complex conjugation. This shows that the same algorithm 
used for computing DFT can be used for computing IDFT.

6.27	 How many multiplications are required in DFT and FFT when N = 2048?

Section 6.6—Computing with MATLAB®

6.28	� Use MATLAB to compute the FFT of the following signals. For each signal, 
plot |X(k)|.

	 (a)	 x[n] = 1, 0 ≤ n ≤ 12
	 (b)	x[n] = n, 0 ≤ n ≤ 10

	 (c)	 x n

n

n n[ ]

,

, , , ,

,

=
=

=
ì

í
ï

î
ï

1 0

1 1 2 10

0

/

otherwise

…

	 (d)	x[n] = n(0.8)n,  0 ≤ n ≤ 10
6.29	 In Example 6.3, the DTFT of the signal x[n] = a|n| is

	
X

a

a a
( )

cos
W = -

- W +
1

1 2

2

2

		  For a = 0.75 and 0 < Ω < 2π, plot |X(Ω)|.
6.30	Use MATLAB to find the DFT of the discrete signal

	 x néë ùû = - -{ }1 2 0 1 2 1 5 4, , , , , , ,

6.31	 Consider the 16-point sequence

	
x n

n
[ ]

, , , ,

,
=

=ì
í
î

1 0 1 16

0

…

otherwise

		  Using MATLAB, plot the absolute value of the DFT of x[n].

Section 6.7—Applications

6.32	 Use MATLAB to plot Blackman windowing for N = 15.
6.33	� Modify the window analysis program of Example 6.14 by replacing Hamming 

window with Hanning window.
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7 z-Transform

There is no end to education. We are all in the kindergarten of God.

—Elbert Hubbard

CODES OF ETHICS

Engineering is a profession that makes significant contributions to the economic and 
social well-being of people all over the world. As members of this important profes-
sion, engineers are expected to exhibit the highest standards of honesty and integrity. 
Unfortunately, the engineering curriculum is so crowded that there is no room 
for a course on ethics in most schools. The Institute of Electrical and Electronics 
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Engineers (or IEEE) Code of ethics is presented here to acquaint students with ethi-
cal behavior in engineering professions.

We, the members of the IEEE, in recognition of the importance of our technolo-
gies in affecting the quality of life throughout the world, and in accepting a personal 
obligation to our profession, its members and the communities we serve, do hereby 
commit ourselves to the highest ethical and professional conduct and agree:

	 1.	To accept responsibility in making engineering decisions consistent with 
the safety, health and welfare of the public, and to disclose promptly factors 
that might endanger the public or the environment.

	 2.	To avoid real or perceived conflicts of interest whenever possible, and to 
disclose them to affected parties when they do exist.

	 3.	To be honest and realistic in stating claims or estimates based on available data.
	 4.	To reject bribery in all its forms.
	 5.	To improve the understanding of technology, its appropriate application, 

and potential consequences.
	 6.	To maintain and improve our technical competence and to undertake tech-

nological tasks for others only if qualified by training or experience, or after 
full disclosure of pertinent limitations.

	 7.	To seek, accept, and offer honest criticism of technical work, to acknowl-
edge and correct errors, and to credit properly the contributions of others.

	 8.	To treat fairly all persons regardless of such factors as race, religion, gender, 
disability, age, or national origin.

	 9.	To avoid injuring others, their property, reputation, or employment by false 
or malicious action.

	 10.	To assist colleagues and coworkers in their professional development and to 
support them in following this code of ethics.

—Courtesy of IEEE

7.1  INTRODUCTION

The z-transform is the discrete-time counterpart of the Laplace transform. It puts 
at our disposal a compact tool for describing a broad variety of systems and their 
properties.

Just as Laplace transform is useful in handling signals that do not have Fourier 
transform, the z-transform enables us to treat discrete-time signals that do not have 
discrete-time Fourier transforms (DTFT). (For example, the unit sequence u[n] does 
not have a DTFT.) Also, just as the Laplace transform converts integrodifferential 
equations into algebraic equations, the z-transform converts difference equations 
into algebraic equations that are easier to manipulate and solve. Therefore, tech-
niques in this chapter parallel the techniques used in Chapter 3 on Laplace trans-
form. Although the properties of the z-transform are similar to those of the Laplace 
transform, there are some differences. Like Laplace transform, the z-transform is 
applicable to systems with initial conditions.
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We begin by defining the z-properties and studying its important properties. The 
z-transform of some common discrete-time signals is derived. We present methods 
for finding the inverse z-transform. Two important applications of the z-transform are 
discussed. Finally, we consider using MATLAB® to find z-transform and its inverse.

7.2  DEFINITION OF THE z-TRANSFORM

The z-transform is the generalization of the discrete-time Fourier transform (DTFT). 
We recall that from Chapter 6, the DTFT of a signal x[n] is given by

	

X x n e j n

n

( ) [ ]W = - W

=-¥

¥

å 	 (7.1)

Inserting a factor ρ−n in Equation 7.1 leads to

	

X x n e x n en j n

n

j n

n

( ) [ ] [ ]( )W = =- - W

=-¥

¥
W -

=-¥

¥

å år r 	 (7.2)

If we let z = ρejΩ. Then, Equation 7.2 becomes

	

X z x n z n

n

( ) [ ]= -

=-¥

¥

å 	 (7.3)

This is the two-sided (or bilateral) z-transform. The one-sided (or unilateral) 
z-transform is

	

X z x n x n z n

n

( ) { [ ]} [ ]= = -

=

¥

åZ
0

	 (7.4)

Only the one-sided z-transform will be discussed in this chapter. X(z) and x[n] con-
stitute a z-transform pair.

	 x n X zZ[ ] ( )¾ ®¾ 	 (7.5)

Note the following:
	 1.	From Equation 7.4, we notice that the z-transform of x[n] is a power series 

of z−1 whose coefficients are x[n], that is,

	

X z x n z x x z x z x zn

n

( ) [ ] [ ] [ ] [ ] [ ]= = + + + +-

=

¥
- - -å

0

1 2 30 1 2 3 � 	 (7.6)

		  In this power series, z −n can be interpreted as indicating the nth sampling 
instant.



312 Signals and Systems: A Primer with MATLAB®

	 2.	We also notice that the sum in Equation 7.4 may not converge for all values 
of z. Each z-transform is associated with a region in the complex plane for 
which the transform exists. We will discuss this further in the next section.

	 3.	Generally, z is a complex variable with z = ∑ + jΩ just as the Laplace trans-
form variable s = σ + jω. z as a complex number z = ρejΩ is illustrated in 
Figure 7.1.

	 4.	 In our development of z-transforms, we will be using the formula for the 
geometric series

	

1
1

1
2 3

0

+ + + + = =
-

=

¥

åa a a a
a

n

n

� 	 (7.7)

		  which is convergent if and only if |a| < 1.

Example 7.1

Let x[n] by defined by

	

x n

n

n[ ]

,

,

,

=
=
=

ì

í
ï

î
ï

1 1

3 4

0 otherwise

Find the z-transform.

Solution

Using Equation 7.6,

	
X z z z

z z
z

z
( ) = + = + =

+- -1 3
1 3 31 4

4

3

4

Practice Problem 7.1  Find the z-transform of the discrete-time signal

	

x n

n

n[ ]

,

,

,

=
=
=

ì

í
ï

î
ï

2 11

4 42

0 otherwise

Answer: 4 2 31

42

+ z
z

Im(z)

Re(z)Ω

1

1

z
ρ

FIGURE 7.1  The unit circle in the z-plane.
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Example 7.2

Find the z-transform of the impulse sequence δ[n − m], m ≥ 0.

Solution

The given sequence can be written as

	
d[ ]

,

,
n m

n m
- =

=ì
í
î

1

0 otherwise

that is, the sequence is zero for all n except when n = m. Hence, the z-transform is

	
Z{ [ ]} [ ]d dn m n m z zn m

n

- = - =- -

=

¥

å
0

	 (7.2.1)

Notice that if m = 0, then

	 Z{ [ ]}d n = 1	 (7.2.2)

Practice Problem 7.2  Find the z-transform of the unit-sample sequence

	
x n

n

n
[ ]

,

,
=

=
¹

ì
í
î

1 0

0 0

Answer: 1.

7.3  REGION OF CONVERGENCE

Just like Laplace transform, the z-transform X(z) converges only for certain range of z 
known as the region of convergence (ROC). In order for the z-transform to be com-
plete, its ROC must be specified. The ROC specifies the region where the z-transform 
converges. The ROC may be within a circle (such as |z| < |a|, as shown typically in 
Figure 7.2a), outside a circle (such as |z| > |a|, as typically shown in Figure 7.2b), or 
within an annulus (such as |a| < |z| < |b|, as shown typically in Figure 7.2c). An ROC 
does not include a pole because the z-transform does not converge at a pole.

To illustrate how to find the ROC, let us consider the following examples.

Example 7.3

Determine the z-transform of an exponential discrete-time signal represented by 
x[n] = anu[n].

Solution

	

X z a z
a

z

a

z

a

z
n n

n

( ) = = + + + +-

=

¥

å 1
2

2

3

3

0

�
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This is a geometric series which has the form

	
q

q
qn

n=

¥

å =
-

<
0

1
1

1, | |

In our case, q = a/z so that

	

X z
a
z

z
z a

( ) =
-

=
-

1

1

The region of convergence is a
z

z a< >1 or | | | |. This is similar to ROC in 

Figure 7.2b.

Practice Problem 7.3  Obtain the z-transform of the discrete-time unit step signal 
x[n] = u[n]. Specify the ROC.

Answer: z
z

z
-

>
1

1, | |

Example 7.4

Find the z-transform of the following composite signal and determine its region of 
convergence.

	
x n u n u n

n n

[ ] [ ] [ ]= æ
è
ç

ö
ø
÷ + -æ

è
ç

ö
ø
÷

1
2

4
1
3

2

Im(z)

Im(z) Im(z)

Re(z) Re(z)

Re(z)

(c)

(b)(a)

ROC

ROC
ROC

FIGURE 7.2  The regions of convergence (ROCs) of the z-transforms of various sequences.
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Solution

x[n] consists of two signals. We may find the z-transform of each separately and 
add them.

	
x n u n

n

1
1
2

[ ] [ ]= æ
è
ç

ö
ø
÷

From Example 7.3,

	

X z
z

z
z1 1

2

1
2

( ) ,=
-

> 	 (7.4.1)

Similarly,

	
x n u n u n

n n

2

2

4
1
3

4
1
9

[ ] [ ] [ ]= -æ
è
ç

ö
ø
÷ = æ

è
ç

ö
ø
÷

Using the result from Example 7.3 again,

	

X z
z

z
z2

4
1
9

1
9

( ) ,=
-

> 	 (7.4.2)

Combining Equations 7.4.1 and 7.4.2 gives

	

X z X z X z
z

z

z

z

z
z

z
z

( ) ( ) ( )= + =
-

+
-

=
-

+
-

1 2 1
2

4
1
9

2
2 1

36
9 1

To determine the ROC, we realize that X(z) exists if and only if both X1(z) and X2(z) 
exist. Hence, the region of converge is |z| > ½, which covers the ROC of both 
X1(z) and X2(z).

Practice Problem 7.4  Determine the z-transform and the ROC for

	
y n u n u n

n n

[ ] [ ] [ ]= æ
è
ç

ö
ø
÷ - æ

è
ç

ö
ø
÷4

1
3

5
2
3

Answer: Y z
z

z
z

z
z( ) , | |=

-
-

-
>

12
3 1

15
3 2

2
3

7.4  PROPERTIES OF THE z-TRANSFORM

We now consider some basic properties of the z-transform. We use those properties 
to derive the z-transform of some signals and develop a z-transform table. We first 
state each property, prove it, and then illustrate it with examples.
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7.4.1 L inearity

Let x[n] and y[n] be two discrete-time signals with transforms X(z) and Y(z), respec-
tively. The z-transform of their linear combination is

	
Z ax n by n aX z bY z[ ] [ ] ( ) ( )+{ } = + 	 (7.8)

where a and b are constants.
For example, from Example 7.3 and Practice Problem 7.3, we know that

	
a u n

z

z a
z a u n

z

z
zn [ ] , [ ] , | |«

-
< «

-
>and

1
1 	 (7.9)

By the linearity property,

	
2 3

2 3
1

1a u n u n
z

z a

z

z
z a zn [ ] [ ] , | | | | | |+ =

-
+

-
> >and 	 (7.10)

7.4.2 T ime-Shifting

This properties states that if X(z) is the z-transform of x[n], then

	
x n m z X zm[ ] ( )- « - 	 (7.11)

assuming zero initial conditions. To prove this, we use Equation 7.4.

	

Z{ [ ]} [ ]x n m x n m z n

n

- = - -

=

¥

å
0

By changing variables k = n − m, we get

	

Z{ [ ]} [ ] [ ] ( )( )x n m x k z z x k z z X zm k m

k

k m

k

- = = =- + -

=

¥
- -

=

¥

å å
0 0

	 (7.12)

This assumes that the signal is causal (x[n] = 0 for n < 0).
For example, when m = 1 or −1, we have

	

x n z X z

x n zX z

[ ] ( )

[ ] ( )

- «

+ «

-1

1

1

	 (7.13)
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For nonzero initial conditions, the time delay property becomes

	 x n m z X z z x z x m x mm m[ ] ( ) [ ] [ ] [ ]- « + - + + - + + -- - + -1 11 1� 	 (7.14)

7.4.3  Frequency Scaling

If X(z) is the z-transform of x[n], then

	

a x n X
z

a
n [ ] « æ

è
ç

ö
ø
÷ 	 (7.15)

This implies that multiplication by an in the time domain corresponds to scaling in 
the frequency or z domain.

By definition, the z-transform of the sequence anx[n] is

	

Z a x n a x n z x n
z

a

X
z

a

n n n

n

n

n

[ ] [ ] [ ]{ } = = æ
è
ç

ö
ø
÷

= æ
è
ç

ö
ø
÷

-

=

¥ -

=

¥

å å
0 0 	

(7.16)

This property can be used to find the z-transform of signals multiplied by an expo-
nential signal. For example,

	 e x n X e zj n jW - W«0 0[ ] ( ) 	 (7.17)

We know that

	
cos( ) [ ] [ ]W = +( )W - Wn u n e e u nj n j n1

2 	 (7.18)
and that

	
u n

z

z
[ ] «

-1
	 (7.19)

	
e u n

ze

ze

z

z e
j n

j

j j
W

W

W - W«
-

=
-

[ ]
1

	 (7.20)

Similarly,

	
e u n

z

z e
j n

j
- W

W«
-

[ ] 	 (7.21)
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Combining Equations 7.20 and 7.21 gives

	
Z nu n

z

z e

z

z e

z z

z zj jcos [ ]
( cos )

cos
W{ } =

-
+

-
é
ëê

ù
ûú

=
- W

- W +- W W
1
2 2 12 	 (7.22)

7.4.4 T ime Reversal

If x[n]↔X(z), then

	

x n X
z

[ ]- « æ
è
ç

ö
ø
÷

1
	 (7.23)

To prove this, we use Equation 7.4

	

Z{ [ ]} [ ]x n x n z n

n

- = - -

=

¥

å
0

Replacing −n with k,

	
Z{ [ ]} [ ] [ ]x n x k z x k

z
X

z
k

k

- = = æ
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ø
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ø
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-
1 1

	 (7.24)

For example, from Equation 7.17,

	
u n

z

z
[ ] «

-1

Applying Equation 7.24,

	
u n

z

z z
[ ]- «

-
=

-
1

1 1
1

1
/

/
	 (7.25)

7.4.5 M odulation

The modulation property is very important in communication theory and digital 
signal processing. If x[n]↔X(z), then

	
(cos ) [ ] ( ) ( )W « +éë ùû

W - Wn x n X e z X e zj j1
2

	 (7.26)

	
(sin ) [ ] ( ) ( )W « -éë ùû

W - Wn x n
j

X e z X e zj j

2
	 (7.27)
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To prove Equations 7.26 and 7.27, we use Euler’s identity

	
cos [ ] [ ] [ ]W = +( )- W Wnx n e x n e x nj n j n1

2
	 (7.28)

	
sin [ ] [ ] [ ]W = -( )- W Wnx n

j
e x n e x nj n j n

2
	 (7.29)

From Equation 7.17,

	 e x n X e zj n jW - W«0 0[ ] ( ) 	 (7.30)

	 e x n X e zj n j- W W«0 0[ ] ( ) 	 (7.31)

Applying Equation 7.30 and 7.31 on Equations 7.28 and 7.29 produces Equations 
7.26 and 7.27. We can use this property to find the z-transforms of cosine and sine 
signals. We already got the z-transform of cosine in Equation 7.22.

7.4.6 A ccumulation

Let y[n] be the summation or accumulation of the discrete-time signal x[n], with 
x[n] = 0 for n = −1, −2, −3,…. Then

	

y n x k
k

n

[ ] [ ]=
=

å
0

	 (7.32)

The accumulation property states that

	

x k
z

z
X z

k

n

[ ] ( )
=

å «
-

0
1

	 (7.33)

It states that the z-transform of the sum of x[n] is equal to the z/(z − 1) times the 
z-transform of x[n].

To prove Equation 7.33, we write

	

y n x k x n
k

n

[ ] [ ] [ ]= +
=

-

å
0

1

	 (7.34)

This may be written as

	 y n y n x n[ ] [ ] [ ]= - +1 	 (7.35)

Taking the z-transform of both sides and applying the time-shifting property, we 
obtain

	
Y z

z
Y z X z( ) ( ) ( )= +1

	 (7.36)



320 Signals and Systems: A Primer with MATLAB®

Solving for Y(z) yields

	
Y z

z
X z

z

z
X z( ) ( ) ( )=

-
=

--
1

1 11 	 (7.37)

7.4.7  Convolution

This property plays a very useful role in linear system theory. It states that if

	 x n X z h n H z[ ] ( ) [ ] ( )« «and 	 (7.38)

then their time convolution in the time domain is equivalent to their product in the 
frequency or z domain, that is,

	
y n x n h n Y z X z H z[ ] [ ]* [ ] ( ) ( ) ( )= « = 	 (7.39)

Since the property applies to causal as well as noncausal signals, we prove it to the 
general case of noncausal signals, where the convolution sum ranges from −∞ to ∞. 
By definition,

	

Y z x n h n z x n h n k zn

n k

n

n

( ) [ ]* [ ] [ ] [ ]= = -
æ

è
çç

ö

ø
÷÷

=
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=-¥

¥

=-¥

¥
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¥

å åå

xx k h n k z n
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[ ] [ ]-
æ

è
çç

ö

ø
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-

=-¥

¥

=-¥

¥

åå
	

(7.40)

We note that the term in brackets is the z-transform of the shifted signal h[n − k]. By 
applying the time-shifting property, we get

	

Y z x k z H z x k z H z X z H zk

k

k

k

( ) [ ] ( ) [ ] ( ) ( ) (= ( ) =
æ

è
çç

ö

ø
÷÷ =-

=-¥

¥
-

=-¥

¥

å å )) 	 (7.41)

7.4.8 I nitial and Final Values

The initial x[0] and the final value x[∞] are given by the initial and value theorems, 
which are stated as

	
x X z

z
[ ] lim ( )0 =

®¥
	 (7.42)

	
x z X z

z
[ ] lim( ) ( )¥ = -

®

-

1

11 	 (7.43)

assuming that x[∞] exists.



321z-Transform

To prove Equation 7.42, we write Equation 7.4 explicitly as

	 X z x x z x z x k z k( ) [ ] [ ] [ ] [ ]= + + + + +- - -0 1 21 2 � � 	 (7.44)

As z→∞, the terms z−k →0 for all k > 0. Hence, Equation 7.44 becomes

	
lim ( ) [ ]
z

X z x
®¥

= 0

To prove Equation 7.43, we apply the time-shifting property

	 Z{ [ ] [ ]} ( ) ( )x n x n z X z- - = - -1 1 1 	 (7.45)

The left-hand side of Equation 7.45 can be written as

	

{ [ ] [ ]} lim { [ ] [ ]}x n x n z x n x n z
n

n

N
n

N
n- - = - -

=

¥
-

®¥
=

-å å1 1
0 0

	 (7.46)

If we take the limit as z→1, combining Equations 7.45 and 7.46 produces

	

lim( ) ( ) lim { [ ] [ ]}

lim ( ) ( )

z N
n

N

z X z x n x n

x N x

®

-

®¥
=

¥

®¥

- = - -

= = ¥

å1

1

0

1 1
	

(7.47)

The initial value theorem can be used to check the z-transform of a given signal. The 
final value theorem gives the correct result only when x[∞] exists. It can be shown 
that if there are poles on or outside the unit circle, except for a single pole at z = 1, the 
final value theorem does not apply.

For example, let us find the initial and final values of a unit step function, u[n]. We 
know that u[0] = 1 = u[∞]. By the initial value theorem,

	
u U z

z

zz z
[ ] lim ( ) lim0

1
1= =

-
æ
è
ç

ö
ø
÷ =

®¥ ®¥
	 (7.48)

By the final value theorem,

	
x z X z

z

z

z

zz z
[ ] lim( ) ( ) lim¥ = - = -

-
æ
è
ç

ö
ø
÷ =

®

-

®1

1

1
1

1
1

1 	 (7.49)

The theorems confirm what we know already.
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These properties of the z-transform are listed in Table 7.1, while Table 7.2 pro-
vides a collection of the z-transforms of common signals.

Example 7.5

Find the z-transform of the pulse function defined by

	
p n

n m
[ ]

, ,...,

,
=

= -ì
í
î

1 1

0

0,1, 2

otherwise              

Solution

We can express p[n] in terms of the unit step function.

	 p[n] = u[n] − u[n − m]

TABLE 7.1
Properties of the z-Transforms

Property x[n] X(z)

1. Linearity ax[n] + by[n] aX(z) + bY(z)
2. Time-shifting x[n−m] z−mX(z) + z−m + 1x[−1] + ⋯ + z−1x[−m + 1] 

+ x[−m]

3. Frequency scaling anx[n] X
z

a
æ

è
ç

ö

ø
÷

4. Time reversal x[−n] X
z

1æ

è
ç

ö

ø
÷

5. Multiplication by n nx[n] -z
d

dz
X z( )

6. Multiplication by n2 nnx[n] z
d

dz
X z z

d

dz
X z( ) ( )+ 2

2

2

7. Modulation

Multiplication by e j nW0 e x nj nW0 [ ] X e zj( )- W0

Multiplication by cosΩn (cosΩn)x[n]
1
2

X e z X e zj j( ) ( )W - W+éë ùû

Multiplication by sinΩn (sinΩn)x[n]
j

X e z X e zj j

2
( ) ( )W - W-éë ùû

8. Accumulation x k
k

n

[ ]
=

å
0

z

z
X z

-1
( )

9. Convolution x[n]* h[n] X(z)H(z)

10. Initial value x X z
z

[ ] lim ( )0 =
®¥

11. Final value x z X z
z

[ ] lim( ) ( )¥ = -
®

-

1

11
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TABLE 7.2
Some Common z-Transform Pairs

x[n] X(z) ROC 

1. δ[n] 1 All z

2. δ[n − m]
1

zm z ≠ 0

3. u[n] z

z -1
|z| > 1

4. anu[n] z

z a-
|z| > |a|

5. nu[n] z

z( )-1 2
|z| > 1

6. (n + 1)u[n] z

z

2

21( )-
|z| > 1

7. n2u[n] z z

z

( )

( )

+
-

1

1 3
|z| > 1

8. nanu[n] az

z a( )- 2
|z| > |a|

9. (n + 1)an z

z a

2

2( )-
|z| > |a|

10. n2anu[n] az z a

z a

( )

( )

+
- 3

|z| > |a|

11. exp[−anT] z

z aT- -exp[ ]
|z| > e−aT

12. cosΩn u[n] z z

z z

2

2 2 1

- W
- W +

cos

cos
|z| > 1

13. sinΩn u[n]
z

z z

sin

cos

W
- W +2 2 1

|z| > 1

14. an(cosΩn) u[n]
z za

z za a

2

2 22

- W
- W +

cos

cos
|z| > |a|

15. an(sinΩn) u[n]
za

z za a

sin

cos

W
- W +2 22

|z| > |a|
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Taking the z-transform of each term and applying the time-shifting property, 
we get

	
P z

z
z

z
z

z
z z

z
m

m

( )
( )

=
-

-
-

=
-
-

-
-

1 1
1

1

Practice Problem 7.5  Let p[n] be as defined in Example 7.5. Derive the 
z-transform of

	 q n a p nn[ ] [ ]=

Answer: Q z
z a z

z a

m m

( )
( )

=
-

-

-1

Example 7.6

Derive the z-transform of y[n] = nanu[n].

Solution

We let x[n] = anu[n]. From entry 4 in Table 7.2,

	
X z

z
z a

( ) =
-

We now apply multiplication-by-n property, which states that

	
Z nx n z

d
dz

X z{ [ ]} ( )= -

But

	
z

d
dz

X z
az

z a
( )

( )
=

-
- 2

Thus,

	
Y z na u n

az
z a

n( ) { [ ]}
( )

= =
-

Z 2

Practice Problem 7.6  Determine the z-transform of y[n] = n2anu[n].

Answer: az z a
z a
( )

( )
+

- 3
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Example 7.7

Use the z-transform to find the convolution of the following two sequences:

	
x n h n[ ] = - = -[ , , , [ ] [ , , , , ]1 2  1  4] and 2   1 3  10

Solution

We use Equation 7.4 to find the z-transform of x[n] and h[n].

	 X z z z z( ) = - + +- - -1 2 41 2 3

	 H z z z z z( ) = + + - +- - - -2 0 31 2 3 4

Applying the convolution property gives

	

Y z X z H z

z z z z

z z z z z

( ) ( ) ( )=

= + + - +

- + - + -

- - - -

- - - - -

2 0 3

4 0 2 6 2

1 2 3 4

1 2 3 4 5

++ + + - +

+ + - +

= - +

- - - -

- - - - -

-

2 0 3

8 0 4 12 4

2 4 3

2 3 4 5 6

3 4 5 6 7

1

z z z z z

z z z z z

z

+

zz z z z z z- - - - - -+ + - - +2 3 4 5 6 73 8 11 4

From this, we obtain y[n] as

	 y[n] = [2, −4, 3, 3, 8, −1, −11, 4]

Practice Problem 7.7  Use the z-transform to find the convolution of these 
sequences:

	 x n h n[ ] [ , , , ]= =1 1 1 1   and [ ] [0, 1, 0.5, 1, 1.5]

Answer: [0, 1, 1.5, 2.5, 4, 3, 2.5, 1.5]

Example 7.8

Let the z-transform of a signal be

	
X z

z
z z z

( )
.

( )( . )
=

-
- +

0 75
1 0 75

Find the initial and final values.
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Solution

Applying the initial and final value theorems, we obtain

	

x X z
z

z z z

z

z z

z

[ ] lim ( ) lim
.

( )( . )

lim
.

0
0 75

1 0 75

1 0 752
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=
-
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/ //
/ /

z
z z

3

11 1 1 0 75
0

( )( . )- +
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x
z

z
X z

z
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z
z z zz z
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.
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l

¥ =
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=
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ö
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1 1 0 75
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iim
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( . )
.

( . )
.

z

z
z z®

-
+

æ
è
ç

ö
ø
÷ =

-
+

= =
1 2 2

0 75
0 75

1 0 75
1 1 0 75

1
7

0 1429

Practice Problem 7.8  Obtain the initial and final values of the signal whose 
z-transform is given by

	
X z

z
z z

( )
. .

=
+

- +

-

- -

1 2
1 1 6 0 6

1

1 1

Answer: 1, 7.5

Example 7.9

Find the transfer function H(z) = Y(z)/X(z) for the causal system described by the 
following difference equation:

	 y n y n y n x n x n[ ] [ ] [ ] [ ] [ ]- - + - = + -3 1 4 2 3

Solution

Applying linearity and time-shifting properties, we have

	 Y z z Y z z Y z X z z X z( ) ( ) ( ) ( ) ( )- + = +- - -3 41 2 3

or

	 Y z z z X z z( ){ } ( ){ }1 3 4 11 2 3- + = +- - -

Thus,

	
H z

Y z
X z

z
z z

z
z z z

( )
( )
( )

= =
+

- +
=

+
- +

-

- -

1
1 3 4

1
3 4

3

1 2

3

3 2

Practice Problem 7.9  Given the difference equation

	 y n y n y n x n x n[ ] [ ] [ ] [ ] [ ]+ + + + = + -3 2 1 2

Find the transfer function H(z).

Answer: H z
z

z z
( ) =

-
+ +

2

3

1
2 1



327z-Transform

7.5  INVERSE z-TRANSFORM

The problem of finding the inverse z-transform is the problem of finding x[n] for a 
given X(z). The direct way to do this is to evaluate the contour integral:

	

x n
j

X z z dzn[ ] ( )= -ò1
2

1

p
G
� 	 (7.50)

where Γ is a closed contour that encloses the origin and includes all poles of X(z). Γ is 
usually determined by the region of convergence of the summation in Equation 7.4. 
It encircles all singularities in the ROC. This direct method of finding the inverse 
transformation is computationally involved and will not be pursued further. We would 
rather use two other methods: long division expansion and partial fraction expansion.

7.5.1 L ong Division Expansion

To find the inverse z-transform of X(z), we expand X(z) = N(z)/D(z) in a power series 
in z−1 by using long division. The values of x[n] are taken as the coefficients of the 
series expansion. The long division becomes tedious if more than few values are 
needed. This major deficiency limits the usefulness of the long division approach.

Example 7.10

Use long division expansion to find x[n] given that

	
X z

z
z z

( ) =
-

+ +

2

3

2
3

Solution

We carry out the long division as follows:

	

z z z

z z

z

z z

z z

3 2

2 1

1

2 3

1 2

3 2
1 3

3 3
3 3 9

3 3 9

+ + -
+ +

- +
- - -

+ +

-

-

- -

- -

   
   

  
 

)

zz

z z z

z z z

z z z z

-

- -

- - -

- - - -

+ +

+ -

+ - +

3

1 3 4

2 3 4

1 2 3 4

3 3 9

3 6 9

0 3 3

  

 

Hence,

	 X z z z z( ) = - + +- - -1 3 43 3 �
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We compare this with the basic definition of the z-transform in Equation 7.4, that is,

	
X z x n z x x z x z x zn

n

( ) [ ] [ ] [ ] [ ] [ ]= = + + + +-

=

¥
- - -å

0

1 2 30 1 2 3 �

Thus,

	 x x x x x[ ] , [ ] , [ ] , [ ] , [ ] ,0 0 1 1 2 0 3 3 4 3= = = = - = ¼

Practice Problem 7.10  Using long division expansion, find the inverse transform of

	
X z

z
z

( )
.

=
- 0 8

Answer: (0.8)nu[n].

Example 7.11

Find the inverse z-transform of

	
X z

z
z a

z a( ) log , | | | |=
-

æ
è
ç

ö
ø
÷ >

Solution

This can be written as

	
X z

az
az( ) log log( )=

-
æ
è
ç

ö
ø
÷ = - --

-1
1

11
1 	 (7.11.1)

The Maclaurin series expansion for log (1 − u) is given by

	
log( )1

1

1

- = -
=

¥

år
n

rn

n

	 (7.11.2)

Applying Equation 7.11.2 in Equation 7.11.1 with r = az−1 leads to

	
X z

n
a zn n

n

( ) = -

=

¥

å 1

1

	 (7.11.3)

We obtain x[n] as the coefficients of the series in Equation 7.11.3.

	
x n

n
a u nn[ ] [ ]= -

1
1
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Practice Problem 7.11  By long division, find x[n] corresponding to

	
X z

z
z

( ) =
+
+

1
2

Answer: δ[n] − δ[n − 1] + 2δ[n − 2] − 4δ[n − 3] + . . .

7.5.2  Partial Fraction Expansion

We use partial fraction for finding the inverse z-transform in the same way we used it 
to find the inverse Laplace transform in Section 3.4. In using partial fraction, a func-
tion X(z) that does not appear in the z-transform in Table 7.2 is expressed as a sum 
of functions that are listed in the table. The inverse z-transform is then computed 
term by term using the appropriate entries in Table 7.2. We may also need to use the 
z-transform properties in Table 7.1. We will illustrate with examples for the cases of 
simple poles, repeated poles, and complex poles.

Example 7.12

Find the signal corresponding to

	
X z

z
z z

( )
( )( . )

=
+ -

4
1 0 8

Solution

This example is on simple poles. If we expand X(z) as

	
X z

z
z z

A
z

B
z

( )
( )( . ) .

=
+ -

=
+

+
-

4
1 0 8 1 0 8

we will find out that the terms 1/(z + 1) and 1/(z − 0.8) are not in Table 7.2. Thus, 
in order to get the inverse of X(z), we need some additional manipulation. If we 
divide X(z) by z, we get

	

X z
z

X z
z z

A
z

B
z

A z X
zz

z

( )
( )

( )( . ) .

( )
.

= =
+ -

=
+

+
-

= + =
-=-

1

1 1

4
1 0 8 1 0 8

1
4
0 8 ==-

=
=

= =

= - =
+

= =

1

1 0 8
0 8

4
0 2

20

0 8
4

1
4

1 8
2 222

.

( . )
.

.
.

.

B z X
zz

z
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Thus,

	
X z

z
z

z
z

( )
.

.
=

+
+

-
20

1
2 22

0 8

From Table 7.2, we obtain the inverse as

	 u n n n[ ] ( ) . ( . )= - +20 1 2 22 0 8

Practice Problem 7.12  Find the inverse of

	
X z

z
z z

( )
( )( )

=
-

- -
4 1
1 2

Answer: −0.5δ[n]−3u[n] + 3.5(2)nu[n]

Example 7.13

Find the inverse z-transform of the function

	
X z

z
z z

( )
( . )( )

=
+

- -
1

0 5 12

Solution
This example is on repeated poles. We let

	
X z

X z
z

z
z z z

A
z

B
z

C
z

D
z

1 2 2

1
0 5 1 0 5 1 1

( )
( )

( . )( ) . ( )
= =

+
- -

= +
-

+
-

+
-

	 (7.13.1)

We obtain the expansion coefficients as

	
A zX z

z
z zz
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=
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=
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1
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z
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+
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=
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=
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=
=
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1
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1 0 5 2
0 5
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2
1

1
1

1
0 5

2
10 5

4X z
z

z zz
z

=
=

=
+
-

= =

To find C, we can select any appropriate value of z and substitute in Equation 
7.13.1. If we choose z = 2, we obtain

	

X z
X z

z
z

z z z
A
z

B
z

C
z

D
z

1 2 2

1
0 5 1 0 5 1 1

2 1
21
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+
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-
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-
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+
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2
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4
1

1 1 8 4 10
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Thus,

	
X z

z
z

z
z

z
z

( )
. ( )

= - +
-

-
-

+
-

2
12

0 5
10

1
4

12

Taking the inverse z-transform of each term,

	 x n n n u nn[ ] [ ] { ( . ) } [ ]= - + - +2 12 0 5 10 4d

Practice Problem 7.13  Obtain the inverse z-transform for the function

	
X z

z
z z

( )
( )( )

=
-

- -
6

1 2 2

Answer: −1.5δ[n]−{5−4.5(2)n + 2n(2)n}u[n]

Example 7.14

Find the signal corresponding to the z-transform

	
X z

z z
z z z

( )
( )( )

=
-

- - +
2 3
1 4 5

2

2

Solution

This is an example on complex poles. Setting z2 − 4z + 5 = (z − 2)2 − 4 + 5 = 
(z − 2)2 −(j)2 = (z − 2− j)(z − 2 + j) reveals that there are complex poles at 2 ± j. We 
really do not need to know about these poles to find the inverse. We let

	
X z

X z
z

z
z z z

A
z

Bz C
z z

1 2 2

2 3
1 4 5 1 4 5

( )
( )

( )( )
= =

-
- - +

=
-

+
+

- +

or

	

2 3
1 4 5

4 5 1
1 4 52

2

2

z
z z z

A z z z Bz C
z z z

-
- - +

=
- + + - +

- - +( )( )
( ) ( )( )

( )( )
	 (7.14.1)

Setting the numerators on both sides equal

	 2 3 4 5 12 2z A z z B z z C z- = - + + - + -( ) ( ) ( )

Equating the coefficients

	

z A B B A

z A B C

A C

2 0

2 4

3 5

:

:

= + = -

= - - +

- = -

 or 

Constant:
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Solving these gives A = −1/2, B = ½, and C = 1/2.
Thus,

	
X z

z
z

z z
z z

( )
.

.=
-

-
+

+
- +

0 5
1

0 5
4 5

2

2
	 (7.14.2)

The inverse of the first term is −0.5u[n]. We find the inverse of the second term by 
comparing with entries 14 and 15 in Table 7.2, namely,

	
a n u n

z za
z za a

n(cos ) [ ]
cos

cos
W

W
W

«
-

- +

2

2 22

	
a n u n

za
z za a

n(sin ) [ ]
sin
cos

W
W
W

«
- +2 22

Set z2−4z + 5 = z2−2azcosΩ + a2

We notice that a = 5  and 2acos =
2
5

W = ® W4 cos  and consequently, 

sinW = W
1
5

and = 0.4636.

Thus,

	
X z

z
z

z z
z z

z
z z

( )
.

. .=
-

-
+

-
- +

+
- +

0 5
1

0 5
2

4 5
0 5

3
4 5

2

2 2

The inverse is

	 x n n n u nn n[ ] . ( ) cos . ( ) sin . [ ]= - + ( ) + ( ){ }0 5 1 5 0 4636 3 5 0 4636

Practice Problem 7.14  Obtain the inverse z-transform of

	
X z

z
z z

( ) =
+ +
2
4 82

Answer: 8
4( ) æ

è
ç

ö
ø
÷

n n
u nsin [ ]

p

7.6  APPLICATIONS

The z-transform is fundamentally important to digital signal processing, digital 
communications, and linear control systems. In this section, we consider the use of 
the z-transform in the analysis of discrete-time linear systems. We will apply the 
z-transform to two areas: linear difference equation and transfer function.
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7.6.1 L inear Difference Equation

Most discrete-time systems of practical interest can be described by linear difference 
equations. We can use the z-transform to solve the difference equation for n ≥ 0. To 
do this we first take the z-transform of the two sides of the difference equation. Next, 
we solve algebraically the transformed difference equation. At this point, we can 
evaluate Y(z) and invert it using Table 7.2 to determine y[n].

To obtain the complete solution requires that we know the input signal x[n]. For 
Nth order difference equation, we must also know N initial conditions. Using the 
initial conditions, we obtain the z-transform of the delayed output signals as follows:

	

Z y n z Y z y

Z y n z Y z z y y

Z y

[ ] ( ) [ ]

[ ] ( ) [ ] [ ]

[

-{ } = + -

-{ } = + - + -

-

- -

1 1

2 1 2

1

2 1

nn z Y z z y z y y-{ } = + - + - + -- - -3 1 2 33 2 1] ( ) [ ] [ ] [ ]

	 (7.51)

In general,

	

Z y n m z Y z z y n zm m n

n

m

{ [ ] ( ) [ ]- = + -- -

=
å

1

	 (7.52)

Similarly, the z-transforms of advanced output signals are

	

Z y n zY z zy

Z y n z Y z z y zy

Z y n

{ [ ]} ( ) [ ]

{ [ ]} ( ) [ ] [ ]

{ [ ]

+ = -

+ = - -

+

1 0

2 0 1

3

2 2

}} ( ) [ ] [ ] [ ]= - - -z Y z z y z y zy3 3 20 1 2

	 (7.53)

In general,

	

Z y n m z Y z z y n zm m n

n

m

{ [ ] ( ) [ ]+ = - -

=

-

å
0

1

	 (7.54)

We will illustrate this with an example.

Example 7.15

A second-order discrete-time system is characterized by the difference equation

	 y n y n y n x n x n[ ] . [ ] . [ ] [ ] [ ]+ - - - = + -0 2 1 0 5 2 1

Find the complete solution for the initial conditions y[−1] = 1, y[−2] = 2 and an 
input x[n] = u[n].
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Solution

Taking the z-transform of each term in the difference equation yields

	
Y z z Y z y z Y z z y y X z z( ) . ( ) [ ] . ( ) [ ] [ ] ( )+ + -{ } - + - + -{ } = +- - -0 2 1 0 5 1 21 2 1 -- + -{ }1 1X z x( ) [ ]

We should set x[−1] = 0 since u[n] = 0 for n < 0. Also,

	
X z

z
( ) =

- -

1
1 1

Introducing the initial conditions for y[−1] and y[−2] leads to

	 Y z z z z X z z z( ) . . . . ( )( ) ( ) (1 0 2 0 5 0 2 0 5 1 1 1 11 2 1 1 1+ -{ } + - - = + = + -- - - - - / zz-1)

	

Y z
z z z

z z
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. . ( ) ( )

. .
. .

=
+ + + -

+ -
=

+ -- - -

- -

-0 8 0 5 1 1
1 0 2 0 5

0 8 0 51 1 1

1 2

1/ 00 8 0 5 1
1 1 0 2 0 5

1 8 0 7 0

1 2 1

1 1 2

3 2

. .
( )( . . )

. .

z z z
z z z

z z

- - -

- - -

- + +
- + -

=
+ - ..

( )( . . )
5

1 0 2 0 52

z
z z z- + -

We use partial fraction to obtain y[n].

	
Y z

Y z
z

z z
z z z

A
z
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1

21 8 0 7 0 5
1 0 8141 0 6141 1
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( ) . . .

( )( . )( . )
= =

+ -
- + -

=
-

+
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C
z+

+
-0 8141 0 6141. .

	

A z Y z

B z
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= - =
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´

=

= +

=
( ) ( )
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.

( .

1
1 8 0 7 0 5

1 8141 0 3859
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0 8141

1 1

)) ( )
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( . )( . )

.
.

Y z
z1 0 8141

1 193 0 5699 0 5
1 8141 1 4282

0 0475
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=
- -
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=

CC z Y z
z

= - =
+ -

-=
( . ) ( )

. . .
( . )( ..

0 6141
0 6788 0 4299 0 5
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1 0 6141 882
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Thus,

	
Y z

z
z

z
z

z
z

( )
. .

.
.

.
=

-
+

+
-

-
2 8569

1
0 0475

0 8141
1 1044

0 6141

By taking the inverse z-transform of each term, we finally obtain

	 y n u nn n[ ] { . . ( . ) . ( . ) } [ ]= + - -2 8569 0 0475 0 8141 1 1044 0 6141
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Practice Problem 7.15  Use the z-transform to solve the difference equation

	 y n y n x n[ ] . [ ] [ ]+ - =0 6 1

where
x[n] = 4δ[n − 1]
y[−1] = −2.

Answer: 6.667δ[n]−5.4667(−0.6)nu[n]

7.6.2 T ransfer Function

The transfer function plays an important role in the analysis of discrete-time linear 
systems. In this section, we will define the discrete-time transfer function and how 
to find the system impulse and step responses. We will also learn how to use the 
transfer function to determine system performance characteristics such as stability 
and frequency response.

The relationships between the system input x[n], output y[n], and impulse response 
and their z-transforms are given in Equation 7.39, namely,

	 y n x n h n Y z X z H z[ ] [ ]* [ ] ( ) ( ) ( )= « = 	 (7.55)

From this, we obtain the transfer function H(z) as

	
H z

Y z

X z
( )

( )
( )

= 	 (7.56)

This implies that the transfer function is the ratio of the z-transforms of the out-
put and input. We obtain the transfer function by either transforming the difference 
equation or transforming the system representation.

When the system input is a unit impulse δ[n] (δ[n]↔1), the output of the system is 
equal to the transfer function H(z). Thus, the discrete-time system impulse response 
is given by

	
h n Z H z[ ] ( )= { }-1 	 (7.57)

When the input x[n] is a unit step u[n] so that X(z) = z/(z − 1), the corresponding 
output y[n] is called the step response.

When systems are interconnected, the rules that apply to continuous-time sys-
tems also apply to discrete-time systems. We handle block diagrams such as series, 
parallel, and feedback interconnection in the same manner as for their corresponding 
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continuous-time systems in Section 2.7. For a unit delay, shown in Figure 7.3, the 
input–output relationship is

	 y n x n[ ] [ ]= -1 	 (7.58)

or

	 Y z z X z( ) ( )= -1
	 (7.59)

For the series connection, shown in Figure 7.4a, the overall transfer function is

	 H z H z H z( ) ( ) ( )= 1 2 	 (7.60)

For the parallel connection, shown in Figure 7.4b, the overall transfer function is

	 H z H z H z( ) ( ) ( )= +1 2 	 (7.61)

X(z) Y(z)

+

+

(b)

H1(z)

H2(z)

X(z) Y(z)

(a)

H2(z)H1(z)

X(z) Y(z)+

–

(c)

H1(z)

H2(z)

FIGURE 7.4  Transfer functions for (a) series connection, (b) parallel connection, and 
(c) feedback connection.

D
z–1 Y(z)X(z)

y[n] = x[n–1]

x[n]

FIGURE 7.3  Unit delay.
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For the feedback interconnection, shown in Figure 7.4c, the overall transfer 
function is

	
H z

Y z

X z

H z

H z H z
( )

( )
( )

( )
( ) ( )

= =
+

1

1 21
	 (7.62)

System stability may be addressed in terms of the characteristic roots, the impulse 
response, and the bounded-input–bounded-output (BIBO) criterion. It may also be 
deduced from the system transfer function. The system is stable if h[n] is absolutely 
summable, that is,

	

| [ ] |h n
n=-¥

¥

å < ¥ 	 (7.63)

All the terms in h[n] are decaying exponentials. To achieve this, the magnitudes of 
all the system poles of H(z) must be less than 1, that is, the poles are inside a unit 
circle in the z-plane.

Example 7.16

Consider the α-filter, which is described by Figure 7.5. From the figure, it is evident that

	 y n y n x n[ ] ( ) [ ] [ ]+ - - =1 1a a

Find H(z) and h[n]. You may take α = 0.2.

Solution

With α = 0.2,

	 y n y n x n[ ] . [ ] . [ ]+ - =0 8 1 0 2

We take the z-transform of this to get

	 Y z z Y z X z( ) . ( ) . ( )+ =-0 8 0 21  

	 H z
Y z
X z z

z
z

( )
( )
( )

.

.
.

.
= =

+
=

+-

0 2
1 0 8

0 2
0 81

x[n]

–
α

+ y[n]

y[n–1]

z–1

1–α

FIGURE 7.5  For Example 7.16.
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Taking inverse z-transform gives

	 h n u nn[ ] . ( . ) [ ]= -0 2 0 8

Practice Problem 7.16  Repeat the problem in Example 7.16 with

	 y n y n x n[ ] . [ ] [ ]- - =0 5 1

Answers: H z( )
.

=
-
z

z 0 5
, h[n] = (0.5)n u[n]

Example 7.17

A discrete-time system is described by the difference equation

	 y n y n y n x n x n[ ] . [ ] . [ ] [ ] [ ]- - - - = - -0 6 1 0 05 2 1

Find the impulse response.

Solution

Since there are not initial conditions, the z-transform of the difference equation is

	 Y z z Y z z Y z X z z X z( ) . { ( )} . { ( )} ( ) { ( )}- - = -- - -0 6 0 051 2 1 

The transfer function is given by

	
H z

Y z
X z

z
z z

z z
z z
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 = =
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-
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1 0 6 0 05 0 6 0 05

1

1 2

2

2

To find the impulse function, we apply partial fraction on H(z)
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Thus,

	
H z

z
z

z
z

( )
.

.
.

.
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-
-

-
1 25

0 5
1 8

0 1
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Taking the inverse z-transform of this yields

	 h n u n u nn n[ ] . ( . ) [ ] . ( . ) [ ]= - -1 25 0 5 1 8 0 1

Practice Problem 7.17  Find the impulse response of the discrete-time system 
described by

	
y n y n y n x n x n[ ] [ ] [ ] [ ] [ ]- - - - = - + -

1
12

1
1

12
2 1 2

Answer: - - + æ
è
ç

ö
ø
÷ - æ

è
ç

ö
ø
÷12 1

48
7

1
3

36
7

1
4

d[ ] [ ] [ ]n u n u n
n n

 

7.7  COMPUTING WITH MATLAB®

In this section, we discuss how MATLAB can be used to do the following:

•	 Find the z-transform of a discrete-time signal using the MATLAB com-
mand ztrans.

•	 Determine the inverse z-transform using MATLAB command iztrans.
•	 Determine the poles of a transfer function using MATLAB command roots 

and evaluate the stability of the system.
•	 Use the MATLAB commands dstep and filter to find the step response of 

discrete-time linear system.

Example 7.18

Using MATLAB, find the z-transform of

	 x[n] = n u[n]

Solution

The MATLAB script for doing this is

syms  X x n z
x =  n*heaviside(n);
X = ztrans(x)

The program returns

X =
z/(z^2 - 2*z + 1)

which agrees with what we have in Table 7.2.

Practice Problem 7.18  Use MATLAB to find the z-transform of y[n] = n2u[n]

Answer: Y z
z z

z z z
( ) =

+
- + -

2

3 23 3 1
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Example 7.19

Given the function

	
X z

z
z z

( )
.

=
+

- +
6 4

3 5 32

Find the inverse z-transform x[n].

Solution

We can do this in two ways.

Method 1: Using the iztrans command, we have MATLAB script as follows.

syms  X x n z
X = (6*z +4)/(z^2 -3.5*z + 3);
x = iztrans(X)

MATLAB returns

x =
16*2^n - (52*(3/2)^n)/3 + (4*kroneckerDelta(n, 0))/3

Method 2: We can also use the residue or residuez command, which carries out 
partial-fraction expansion. We illustrate it in the following script.

num = [ 6  4]
den = [1  -3.5  3]
[r, p, k] = residuez(num, den)

MATLAB responds as follows (r = residues, r = poles, and k = direct terms).

r =
    32
   -26
p =
    2.0000
    1.5000
k =
     []

This implies that

	
X z

z z
z

z
z

z
( )

. .
=

-
-

-
=

-
-

-- -

32
1 2

26
1 1 5

32
2

26
1 51 1

From this, we obtain the inverse z-transform as:

	 x n u n u nn n[ ] ( ) [ ] ( . ) [ ]= -32 2 251 5
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Practice Problem 7.19  Use MATLAB to find the inverse z-transform of

	
X z

z
z z

( ) =
-

+ +
2

3 22

Answer: x[n] = 3*(−1)n − 2*(−2)n −Kronecker Delta (n, 0)

Example 7.20

The transfer function of a system is given by

	
H z

z
z z z

( )
.

=
-

- - -
2 3

2 0 53 3

Determine whether the system is stable.

Solution

We only need to find the roots of the denominator to determine the system stability.

den = [1  -2 -1  -0.5];
r = roots(den)

MATLAB returns

r =
   2.4837         
  -0.2418 + 0.3779i
  -0.2418 - 0.3779i

The poles are located on the complex plane as shown in Figure 7.6. We notice 
that the magnitude of the first pole (2.4847) is greater than one and therefore lies 
outside the unit circle. (The other poles lie with the unit circle.) Hence, the system 
is unstable.

Practice Problem 7.20  Determine the stability of a system whose transfer function is

	
H z

z
z z z

( )
. . .

=
-

+ + +
2 1

0 5 0 5 0 53 2

Answer: Stable; all poles lie within the unit circle.

Im(z)

Unit circle

Re(z)

1

–1 1

1

2
x

x

x

FIGURE 7.6  Pole locations for Example 7.20.
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Example 7.21

Obtain the unit step response of a discrete-time system whose transform is

	
H z

z
z z

( ) =
+

- +
3

5 22

Solution

The MATLAB script is as follows. We use the MATLAB command filter in this 
example, while the Practice Problem following this example uses dstep command. 
Given the transfer function, the input and initial conditions, filter returns the system 
output. The step response is shown in Figure 7.7.

num = [1  3];
den = [ 1 -5  2];
n = 0:1:30;
x = [1*ones(size(n))]; % unit step input
y = filter(num, den, x);
% d = length(y);
% n = 0:1:d-1
plot(n,y);
xlabel(‘Sample number n’); 
ylabel(‘step response y[n]’)

Practice Problem 7.21  Change one line of the MATLAB script for Example 7.21 
to y = dstep (num, den). You may delete two lines before that statement and 
add two lines commented after that statement. Plot your result.

Answer: See Figure 7.8.
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 re
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 y[
n]

14 × 1019

FIGURE 7.7  Unit step response; for Example 7.21.
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7.8  SUMMARY

	 1.	The z-transform is used for analyzing discrete-time signals just as its counter-
part Laplace transform is used for analyzing continuous-time signals.

	 2.	The (unilateral) z-transform of a signal x[n] is defined as

	

X z x n z n

n

( ) [ ]= -

=

¥

å
0

	 3.	The region of convergence of the z-transform consists of the values of z for X(z) 
converges.

	 4.	The properties of the z-transform are presented in Table 7.1. Table 7.2 provides 
the z-transform pairs of common signals.

	 5.	To find the inverse z-transform of X(z), we expand X(z) in partial fractions and 
identify the inverse of each term using Table 7.2.

	 6.	Among the applications of the z-transform are the solution of difference equa-
tion and the system transfer function.

	 7.	The z-transform can be used to solve difference equation of a system with 
initial conditions.

	 8.	The transfer function H(z) of a discrete-time system is

	
H z Z h n

Y z

X z
( ) { [ ]}

( )
( )

= =

		  where X(z) and Y(z) are, respectively, the z-transform of the input x[n] and 
output y[n].

		  The inverse z-transform of H(z) is the impulse response h[n].

6 × 1026
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FIGURE 7.8  For Practice Problem 7.21.
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REVIEW QUESTIONS

7.1	 The z-transform may be regarded as the Laplace transform in disguise.
	 (a)	 True, (b) False.
7.2	 The z-transform of the sequence shown in Figure 7.9 is
	 (a)	 2z + z2, (b) 2z−1 + z−1, (c) 2z−1 + z−2, (d) z−1 + 2z−2.
7.3	 The z-transform of δ[n − 1] is
	 (a)	 1, (b) z, (c) z−1, (d) e-z, (b) ez.
7.4	 The z-transform for u[n + 1] is

	 (a)	
1

1z z( )-
, (b) 

1
1( )z -

, (c) 
z

z( )-1
, (d) 

z

z

2

1( )-
.

7.5	 Let X z
z

z z
( ) = +

+ +
1

3 22

		  The initial value x[0] is
	 (a)	 0, (b) 1/2, (c) 1, (d) ∞.
7.6	� Refer to the function X(z) in the previous Review Question. The final value 

x[∞] is
	 (a)	 0, (b) 1/2, (c) 1, (d) ∞.
7.7	 Given the difference equation

	 y n y n y n u n y y[ ] [ ] [ ] [ ], [ ] , [ ]+ - + - = - = - =1 2 1 2 2 1 ,

		  y[0] is
	 (a)	 −2, (b) −1, (c) 0, (d) 1, (e) 2.
7.8	 Which MATLAB command is used for finding the inverse z-transform?
	 (a)	 ztrans, (b) invztrans, (c) iztrans, (d) filter, (e) dstep.
7.9	� Which of these MATLAB command is used for determining the stability of a 

system?
	 (a)	 freqz, (b) residue, (c) residuez, (d) roots.
7.10	 The pole plot of a system is shown in Figure 7.10. The system is
	 (a)	 stable, (b) unstable, (c) marginally state.

Answers: 7.1a, 7.2c, 7.3c, 7.4d, 7.5a, 7.6a, 7.7a, 7.8c, 7.9d, 7.10a.

0 1 2 n

1

2

x[n]

FIGURE 7.9  For Review Question 7.2.
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PROBLEMS

Sections 7.2 and 7.3—Definition of the 
z-Transform and Region of Convergence

	 7.1	 Find the z-transform of the sequences shown in Figure 7.11.
	 7.2	 Determine the z-transform of the signal in Figure 7.12.
	 7.3	 Determine the condition for the following summations to converge.

	 (a)	
2
3

2

1

æ
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ç

ö
ø
÷

=

¥

å zn

n

	 (b)	
1
5

1

æ
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-
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¥

å
n

n

n

z

	 7.4	 Find the z-transform and the ROC for

	
x n u n u nn

n

[ ] [ ] [ ]= + æ
è
ç

ö
ø
÷2

1
2

1

–1

1
Re(z)

–1

x
x

x

Unit circle

Im(z)

FIGURE 7.10  Pole locations for Review Question 7.10.
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x[n]

1 1

–1

n30

–1
(a) (b)

1 2 n31 20

FIGURE 7.11  For Problem 7.1.
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7.5	 Determine the z-transform and its ROC for

	
x n u n u n

n n

[ ] [ ] [ ]= æ
è
ç

ö
ø
÷ - æ

è
ç

ö
ø
÷2

2
3

2
5

Section 7.4—Properties of the z-Transform

7.6	 Find the z-transform of the following signals:
	 (a)	 u[n − m]
	 (b)	nanu[n]
	 (c)	 an cos πn u[n]
7.7	 Determine the z-transform of each of the following signals:
	 (a)	 u[n] − u[n − 1]
	 (b)	an−1 u[n − 1]
	 (c)	 nan u[n − 1]
7.8	 Find the z-transform of each of the following sequences:

	 (a)	 x n n
n

[ ] , , , ,...= æ
è
ç

ö
ø
÷ + -æ

è
ç

ö
ø
÷ =1

2
1
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0 1 2
2

	 (b)	 x n
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,
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1
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0 1 2

0

…

negative   

	 (c)	 x n
n

n

[ ] . ,

,
= ( ) £ £ì

í
ï

îï

0 5 0 5

0 otherwise     

7.9	 Find the z-transform of the following sequences:
	 (a)	 x[n] = nancos(Ω0n)u[n]
	 (b)	x[n] = n2u[n]
	 (c)	 x[n] = ensin(n)u[n]
7.10	 Obtain the z-transform of the following signals:

	 (a)	 x n
n n

[ ] = æ
è
ç

ö
ø
÷ + -æ

è
ç

ö
ø
÷3

2
5

4
1
3

	 (b)	y[n] = 1 − e−an

X[n]

2

3 6 n54210

FIGURE 7.12  For Problem 7.2.
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7.11	 Prove the following z-transform pairs:

	 (a)	 ( ) [ ]
( )

n u n
z

z
+ Û

-
1

1

2

2

	 (b)	 n a u n
az z a

z a
n2

3[ ]
( )

( )
Û +

-

	 (c)	 a n u n
za

z za a
2

2 22
(sin ) [ ]

sin
cos

W Û W
- W +

7.12	 Show that Z nx n z
dX z

dz
[ ]

( ){ } = - .

7.13	 Assuming that sequence x[n] is real-valued, show that X(z) = X* (z* ).
7.14	 A discrete-time signal x[n] = Acos (Ωn) has the z-transform as

	
X z

z z

z z
( )

( . )
.

= -
- +

4 0 8
1 6 12

		  Compute the values of A and Ω.
7.15	 Given that x[n] = 3nu[n], find the z-transform of

	 y n nx n x n u n x n u n[ ] [ ] [ ] [ ] [ ] [ ]= + - - + + +1 1 1 1

7.16	� Determine the initial values of the signals whose z-transforms are given in 
Problem 7.24.

7.17	 Find the initial value in each of the cases in Problem 7.27.
7.18	 Find the initial and final values of x[n] for each of the following cases:

	 (a)	 X z
z

z z
( ) =

-æ
è
ç

ö
ø
÷

-æ
è
ç

ö
ø
÷ -æ
è
ç

ö
ø
÷

2
1
6

1
4

1
5

	 (b)	 X z
z

z z
( ) = +

+ +

2

3

1
2 2

7.19	 The z-transform of a discrete-time signal x[n] is

	
X z

z

z z
( )

( )
= -

-
2
1

		  Calculate x[0], x[1], and x[105].
7.20	 The z-transform of a discrete-time signal is

	
X z

z

z z
( ) =

+ +
2
3 12
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		  Find the z-transform of the following signals:
	 (a)	 y[n] = x[n − 1]u[n − 1]
	 (b)	y[n]= sin(πn/4) x[n]
	 (c)	 y[n] = nnx[n]
	 (d)	y[n] = 2x[n]*x[n]
7.21	 Using the z-transform, determine the convolution of these sequences:

	 x n h n[ ] [ , , ], [ ] [ , ].= - = -1 1 1 3  3, 2  0, 2, 1, 

7.22	 Using the convolution property, find the z-transform of x[n], where

	
x n

n
u n u n[ ] sin [ ]* [ ]= æ

è
ç

ö
ø
÷

p
4

Section 7.5—Inverse z-Transform

7.23	 Find the inverse z-transform of

	 (a)	 X z
z z

1
2

1
5
6

1
6

( ) =
+ +

	 (b)	 X
z

z z
2

1 0 5
=

- -( )( . )

	 (c)	 X z
z

z z
3

2

2

8
1 2

( )
( ) ( )

= -
- -

7.24	 Find the inverse z-transform of the following functions:

	 (a)	 X z
z

z z
( ) =

- +
2

12

	 (b)	 Y z
z z

z z
( )

( )
( )( )

= +
+ -

2
1 1

	 (c)	 H z
z

z z z
( )

( )( / )
=

+ + +
4
1 1 22

7.25	 Obtain the inverse z-transform of

	
X z

z z

z z z
( )

( )( )( )
= + -

- + +

2 2 10
1 2 3

7.26	 The z-transform of x[n] is given by

	
X z

z

z z
( )

( )( )
= +

- +
2 1
1 1

	 (a)	 Find the final value x[∞].
	 (b)	Determine the inverse z-transform of X(z) and check your result in part (a).
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7.27	 Invert each of the following z-transform:

	 (a)	 X z
z

z z
1

1

1 2

1
1 0 75

( )
.

= -
- -

-

- -

	 (b)	 X z
z

z z
2

1

1 2

1
1 0 8 0 64

( )
. .

= +
- +

-

- -

7.28	 Use long division to find the inverse of

	
X z

z

z z
( ) = -

- +
2

1 2

Section 7.6—Applications

7.29	 A discrete-time system is described by

	 y n y n y n y y[ ] [ ] . [ ] , [ ] , [ ] .+ + + + = = =2 1 0 36 0 0 2 1 1

		  Find the response y[n].
7.30	 The difference equation for a system is

	 y n y n y n y y[ ] [ ] [ ] , [ ] , [ ] .+ - + - = - = - =6 1 15 2 0 2 0 1 1

		  Find y[n].
7.31	 Using the z-transform, solve the following difference equation:

	 y n y n yn[ ] [ ] ( . ) , [ ] .+ - = =1 2 1 5 0 1

7.32	 Find the transfer function of the discrete-time system represented by

	 y n y n y n x n x n[ ] . [ ] [ ] [ ] [ ]+ + + + = + +2 0 5 1 1 2

7.33	 Obtain the complete response of the system represented by

	
y n y n y n u n y y[ ] [ ] [ ] [ ], [ ] , [ ]+ - + - = - = - =1

3
1

1
6

2 2 0 1 1

7.34	 A digital filter has the impulse response

	
h n u n

n

[ ] [ ]= æ
è
ç

ö
ø
÷ -1

2
1

		  Find the step response of the filter.
7.34	 A discrete-time linear system has impulse response

	 h n n n[ ] ( . ) ( . )= + - -2 3 0 6 5 0 8

		  Determine the transfer function.
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7.36	 The transfer function of a discrete-time system is

	 H z
z

z z
( ) = +

- +

-

- -
1 2

1

1

1 2

		  Find the system response y[n] when the input is a unit step function u[n].
7.37	 Find the z-transform of the output of the system shown in Figure 7.13.
7.38	� Determine the transfer function of the feedback system represented in 

Figure 7.14.
7.39	 Determine the overall transfer function of the system shown in Figure 7.15. Let

	
h n n n h n nu n h n u n

n

1 2 31
1
3

[ ] [ ] [ ], [ ] [ ], [ ] [ ]= + - = = æ
è
ç

ö
ø
÷d d

7.40	 A discrete-time linear system is shown in Figure 7.16.
	 (a)	 Find the transfer function H(z) of the system.
	 (b)	Find the difference equation that describes the system.

H1(z)

H2(z)

Y(z)X(z)
–

–

+

FIGURE 7.14  For Problem 7.38.

x[n]

h3[n]

h2[n]

y[n]
–

+
h1[n]

FIGURE 7.15  For Problem 7.39.

–

+

z–1

δ[n + 2] y[n + 3]

3

FIGURE 7.13  For Problem 7.37.
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7.41	 Find the response of a system with a transfer function

	
H z

z

z z
( )

.
( . )( . )

= -
+ -

0 6
0 2 0 8

		  and an input x[n] given by
	 (a)	 x[n] = u[n]
	 (b)	x[n] = 2nu[n]
7.42	� A discrete-time system has input x[n] = δ[n] + δ[n − 1] and output y[n] = δ[n] + 

δ[n − 1] + δ[n − 3]. Find H(z) and h[n].
7.43	� Obtain the impulse and step responses of the discrete-time system with trans-

fer function

	
H z

z

z z
( )

.
( . )( )

=
- -

0 8
0 6 2

Section 7.7—Computing with MATLAB®

7.44	 Use MATLAB to find the z-transform of the following signals:
	 (a)	 x[n] = (0.8)n u[n]
	 (b)	x[n] = n(0.6)n u[n]
7.45	 Use MATLAB to find the inverse z-transform of

	
X z

z

z
( )

.
=

- 0 6

7.46	 A linear discrete-time system is represented by the transfer function

	
H z

z

z z z
( ) = +

+ + +
1

2 33 2

		  Use MATLAB to plot the step response of the system.
7.47	 Determine the poles and zeros of the transfer function

	
H z

z z z

z z z
( ) = + +

+ + +-

2

4 3

6
3 4 10

x[n] y[n]

z–1z–1

+

–

FIGURE 7.16  For Problem 7.40.
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7.48	 The z-transform of a system is

	
X z

z z z

z z z z
( )

. .
. .

= - + +
+ - + +

3 2

4 3 2

0 6 0 2 1
0 5 0 5 1

		  Plot the locations of the poles and zeros of X(z).
7.49	� Determine the stability of the systems represented by the following transfer 

function:

	
H z

z z z

z z z z
( )

. . . .
= + + -

+ + - -

3 2

4 3 2

3 1
1 25 0 5 0 375 0 2

7.50	 Check the stability of a system described by the following transfer function:

	
H z

z z z

z z z z
( ) = - + +

- + - +

-3 2

5 4 2

2 6 1
2 5 4
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Appendix A: Mathematical 
Formulas

This appendix—by no means exhaustive—serves as a handy reference. It does con-
tain all the formulas needed to solve problems in this book.

A.1  QUADRATIC FORMULAS

The roots of the quadratic equation ax2 + bx + c = 0

	
x x

b b ac

a
1 2

2 4
2

, = - ± -

A.2  TRIGONOMETRIC IDENTITIES

	

sin sin

cos cos

-( ) = -

-( ) =

x x

x x

	

sec
cos

, csc
sin

tan
sin
cos

, cot
tan

x
x

x
x

x
x

x
x

x

 = 
1 =

= =

1

1
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sin cos

cos sin

sin sin

cos

x x

x x

x x

x

±( ) = ±

±( ) =

±( ) = -

±

90

90

180

180

°

°

°

°

∓

(( ) = -

+ =

cos

cos sin

x

x x2 2 1

	

a

A

b

B

c

C

a b c bc A

sin sin sin

cos

= =

= + -

(law of sines)

(law of cos2 2 2 2 iines)

law of tangents)
tan

tan
(

1
2
1
2

A B

A B

a b

a b

-( )

+( )
= -

+

	

sin sin cos cos sin

cos cos cos sin sin

tan

x y x y x y

x y x y x y

x y

±( ) = ±

±( ) =

±

∓

(( ) = ±tan tan
tan tan
x y

x y1∓

	

2

2

2

sin sin cos cos

sin cos sin sin

cos

x y x y x y

x y x y x y

= -( ) - +( )

= +( ) - -( )

xx y x y x ycos cos cos= +( ) - -( )

	

sin sin cos

cos cos sin cos sin

tan
t

2 2

2 2 1 1 2

2
2

2 2 2 2

x x x

x x x x x

x

=

= - = - = -

= aan
tan

x

x1 2-
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sin cos

cos cos

2

2

1
2

1 2

1
2

1 2

x x

x x

= -( )

= +( )

	
a x b x K x K a b

b

a
cos sin cos , tan+ = +( ) = + = -æ

è
ç

ö
ø
÷

-q qwhere and2 2 1

	 e x j xjx± = ±cos sin (Euler’s formula)

	

cos

sin

.

x
e e

x
e e

j

jx jx

jx jx

= +

= -

=

-

-

2

2

1 57 296rad °

A.3  HYPERBOLIC FUNCTIONS

	

sinh

cosh

tanh
sinh
cosh

coth
tan

x e e

x e e

x
x

x

x

x x

x x

= -( )

= +( )

=

=

-

-

1
2

1
2

1
hh

csc
sinh

sec
cosh

x

x
x

x
x

h

h

=

=

1

1
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sinh sinh cosh cosh sinh

cosh cosh cosh sinh s

x y x y x y

x y x y x

±( ) = ±

±( ) = ± iinh y

x y
x y

x y
tanh

sinh
±( ) =

±( )
±( )cosh

A.4  DERIVATIVES

If U = U(x), V = V(x), and a = constant,

	

d

dx
aU a

dU

dx

d

dx
UV U

dV

dx
V

dU

dx

d

dx

U

V

V
dU

dx
U

dV

dx
V

d

( ) =

( ) = +

æ
è
ç

ö
ø
÷ =

-
2

ddx
aU naU

d

dx
a a a

dU

dx

d

dx
e e

dU

dx

d

dx
U

n n

U U

U U

( ) =

( ) =

( ) =

( ) =

-1

ln

sin coss

cos sin

tan
cos

U
dU

dx

d

dx
U U

dU

dx

d

dx
U

U

dU

dx

( ) = -

= 1
2
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A.5  INDEFINITE INTEGRALS

If U = U(x), V = V(x), and a = constant,

	

adx ax C

UdV UV VdU

U dU
U

n
Cn

n

= +

= -

=
+

+

ò
òò

ò
+

(integration by parts)

1

1
,,

ln

ln
, ,

n

dU

U
U C

a dU
a

a
C a a

e dx
a

e C

xe dx

U
U

ax ax

ax

¹

= +

= + ¹

= +

=

ò

ò

ò

ò

1

0 1

1

>

ee

a
ax C

x e dx
e

a
a x ax C

ax

ax
ax

2

2
3

2 2

1

2 2

-( ) +

= - +( ) +ò

	
ln lnxdx x x x Cò = - +

	
sin cosaxdx

a
ax Cò = - +1

	
cos sinaxdx

a
ax Cò = +1

	
sin

sin2

2
2

4
axdx

x ax

a
Cò = - +
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cos

sin2

2
2

4
axdx

x ax

a
Cò = + +

	
x axdx

a
ax ax ax Csin sin cosò = -( ) +1

2

	
x axdx

a
ax ax ax Ccos cos sinò = +( ) +1

2

	
x axdx

a
ax ax ax a x ax C2

3
2 21

2 2sin sin cos cosò = + -( ) +

	
x axdx

a
ax ax ax a x ax C2

3
2 21

2 2cos cos sin sinò = - +( ) +

	
e bxdx

e

a b
a bx b bx Cax

ax

ò =
+

-( ) +sin sin cos2 2

	
e bxdx

e

a b
a bx b bx Cax

ax

ò =
+

+( ) +cos cos sin2 2

	

sin sin
sin sin

,ax bxdx
a b x

a b

a b x

a b
C a bò =

-( )
-( )

-
+( )
+( )

+ ¹
2 2

2 2

	

sin cos
cos cos

,ax bxdx
a b x

a b

a b x

a b
C a b= -

-( )
-( )

-
+( )
+( )

+ ¹ò 2 2
2 2

	

cos cos
sin sin

,ax bxdx
a b x

a b

a b x

a b
C a b=

-( )
-( )

+
+( )
+( )

+ ¹ò 2 2
2 2
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dx

a x a

x

a
C2 2

11
+

= +ò -tan

	

x dx

a x
x a

x

a
C

2

2 2
1

+
= - +ò -tan

	

dx

a x a

x

x a a

x

a
C

2 2 2 2 2 2
11

2
1

+( )
=

+
+æ

è
ç

ö
ø
÷ +ò -tan

A.6  DEFINITE INTEGRALS

If m and n are integers,

	

sin ax dx =ò 0
0

2p

	

cos ax dx =ò 0
0

2p

	

sin cos2 2

00
2

ax dx axdx = =òò p
pp

	

sin sin cos cos ,mx nxdx mx nxdx m n= = ¹ò ò
0 0

0

p p

	

sin cos
,

,
mx nxdx

m n

m

m n
m n

=
+ =

-
+ =

ì
í
ï

îï
ò
0 2 2

0

2

p even

odd
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sin sin sin sin
,

,
mx nxdx mx nxdx

m n

m n
= =

¹
¹

ì
í
î-

òò
0

0

2

p
p

pp

	

sin

,

,

,

ax

x
dx

a

a

a

=

-

ì

í

ï
ï

î

ï
ï

¥

ò

p

p

2
0

2

0

> 0

= 0

< 0

	

sin

cos
, ,

sin

2

0

2 2

0

2 2

2

2
0 0

x

x
dx

bx

x a
dx

a
e a b

x bx

x a
dx

ab

¥

¥

-

ò

ò

=

+
= > >

+

p

p

00
2

0 0

¥

-ò = > >p
e a bab, ,

	

sin sincxdx c xdx
0

2

0

1
2

¥ ¥

ò ò= =

	

sin sin cos cos ,2

0

2

0

2

0

2

0
2

nxdx xdx nxdx xdx n= = = = =ò ò ò ò
p p p p

p
an integger

	

sin sin cos cos , , ,mx nxdx mx nxdx m n m n= = ¹ò ò
0 0

0

p p

integers

	

sin cos
,

,
mx nxdx

m

m n
m n

m n
= -

+ =

+ =

ì
í
ï

îï
ò

2

0

2 2

0

odd

even

p
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e dx tj tx±

-¥

¥

=ò 2p d( )

	

x e dx
n

a
n ax

n
-

¥

+ò =
0

1

!

	

e dx
a

aa x-

¥

= >ò
2 2

2
0

0

p
,

	

x e dx
n

a a
n ax

n n
2

1

0

2 1 3 5 2 1
2

-
+

¥

= × × -ò �( ) p

	

x e dx
n

a
an ax

n
2 1

0

1

2

2
0+ -

¥

+= >ò !
,

A.7  L’HOPITAL’S RULE

If f(0) = 0 = h(0), then

	
lim

( )
( )

lim
( )
( )x x

f x

h x

f x

h x® ®
=

¢
¢0 0

where the prime indicates differentiation.

A.8  TAYLOR AND MACLAURIN SERIES

	
f x f a

x a
f a

x a
f a( ) = ( ) +

-( ) ¢( ) +
-( ) ¢¢ +

1 2

2

! !
( ) �

	
f x f

x
f

x
f( ) = ( ) + ¢( ) + ¢¢ +0
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where the prime indicates differentiation.
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A.9  POWER SERIES
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A.10  SUMS
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where

A.11  LOGARITHMIC IDENTITIES
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log log log

log log

log log
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x

y
x y
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=10 (commonn logarithm)

log (natural logarithm)ex x= ln
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A.12  EXPONENTIAL IDENTITIES

	
e x

x x xx = + + + + +1
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where e = 2.7182
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A.13  APPROXIMATIONS

If |x| ≪ 1,
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	 ln( )1+ x x�

	
sin lim

sin
x x

x

xx
= =

®
or

0
1

	

cos

tan

x

x x

�

�

1



367

Appendix B: Complex 
Numbers

The ability to handle complex numbers is important in signals and systems. Although 
calculators and computer software packages, such as MATLAB®, are now available 
to manipulate complex numbers, it is advisable that students be familiar with how to 
handle them by hand.

B.1  REPRESENTATION OF COMPLEX NUMBERS

A complex number z may be written in rectangular form as

	 z x jy= + 	 (B.1)

where j = -1; x is the real part of z while y is the imaginary part, that is,

	 x z y z= =Re( ), Im( ) 	 (B.2)

The complex number z is shown plotted in the complex plane in Figure B.1. Since 

j = -1

	

1

1

1

2

3 2

4 2 2

5 4

j
j

j

j j j j

j j j

j j j j

= -

= -

= × = -

= × =

= × =

� 	

(B.3)
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A second way of representing the complex number z is by specifying its magni-
tude r and angle θ it makes with the real axis, as shown in Figure B.1. This is known 
as the polar form. It is given by

	 z z r= Ð = Ð| | q q 	 (B.4)

where

	
r x y

y

x
= + = -2 2 1, tanq

	
(B.5)

or

	 x r y r= =cos , sinq q 	 (B.6)

that is,

	 z x jy r r jr= + = Ð = +q q qcos sin 	 (B.7)

In converting from rectangular to polar form using Equation B.5, we must exercise 
care in determining the correct value of θ. These are the four possibilities:

	

z x jy
y

x

z x jy
y

x

= + =

= - + = ° -

-

-

, tan (

, tan (

q

q

1

1180

Fir

Sec

st quadrant)

oo

Thi

nd quadrant)

rd quadrant)z x jy
y

x

z x jy

= - - = ° +

= -

-, tan (q 180 1

,, tan (q = ° - -360 1 y

x
Fourth quadrant)

	

(B.8)

assuming that x and y are positive.

Im

z

y

Rex0

θ

r

jy

FIGURE B.1  Graphical representation of a complex number.
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The third way of representing the complex number x is the exponential form:

	 z re j= q
	 (B.9)

This is almost the same as the polar form, because we use the same magnitude r and 
the angle θ.

The three forms of representing a complex number are summarized as follows:

	

z x jy x r y r

z r r x y

= + = =

= Ð = + =

, ( cos , sin )

, , ta

q q

q q
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2 2 nn
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æ
è
ç
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= = + =æ
è
ç

ö
ø
÷

1

2 2 1

y

x

z re r x y
y

x
j

Polar form

Exponeq q nntial form

	

(B.10)

B.2  MATHEMATICAL OPERATIONS

Two complex numbers z1 = x1 + jy1  and  z2 = x2 + jy2 are equal if and only, their real 
and imaginary parts are equal, that is,

	 x x y y1 2 1 2= =, 	 (B.11)

The complex conjugate of the complex number z = x + jy is given as:

	 z x jy r re j* = - = Ð - = -q q
	 (B.12)

Thus, the complex conjugate of a complex number is found by replacing every j by −j.
Given two complex numbers z1 = x1 + jy1 = r1∠θ1 and z2 = x2 + jy2 = r2∠θ2, their 

sum is

	 z z x x j y y1 2 1 2 1 2+ = + + +( ) ( ) 	 (B.13)

and their difference is

	 z z x x j y y1 2 1 2 1 2- = - + -( ) ( ) 	 (B.14)

While it is more convenient to perform addition and subtraction of complex num-
bers in rectangular form, the product and quotient of two complex numbers are best 
done in polar or exponential form. For their product,

	 z z r r1 2 1 2 1 2= Ð +q q 	 (B.15)
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Alternatively, using the rectangular form

	

z z x jy x jy

x x y y j x y x y

1 2 1 1 2 2

1 2 1 2 1 2 2 1

= + +

= - + +

( )( )

( ) ( ) 	 (B.16)

For their quotient,

	

z

z

r

r
1

2

1

2
1 2= Ð -q q 	 (B.17)

Alternatively, using the rectangular form as,

	

z

z

x jy

x jy
1

2

1 1

2 2

= +
+ 	

(B.18)

we rationalize the denominator by multiplying both the numerator and denominator 

by z2*.
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-
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(B.19)

B.3  EULER’S FORMULA

Euler’s formula is an important result in complex variables. We derive it from the 
series expansion of ex, cosθ, and sinθ. We know that

	
e x

x x xx = + + + + +1
2 3 4

2 3 4

! ! !
�

	
(B.20)

Replacing x by jθ gives

	
e j jjq q q q q= + - - + +1

2 3 4

2 3 4

! ! !
�

	
(B.21)

Also,

	
cos

! ! !
q q q q= - + - +1

2 4 6

2 4 6

�
	

(B.22)

	
sin

! ! !
q q q q q= - + - +

3 5 7

3 5 7
�

	
(B.23)
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so that

	
cos sin

! ! ! !
q q q q q q q+ = + - - + + -j j j j1

2 3 4 5

2 3 4 5

�
	

(B.24)

Comparing Equations B.21 and B.24, we conclude that

	
e jjq q q= +cos sin

	
(B.25)

This is known as Euler’s formula. The exponential form of representing a com-
plex number as in Equation B.9 is based on Euler’s formula. From Equation B.25, 
notice that

	
cos Re( ), sin Im( )q qq q= =e ej j

	 (B.26)

and that

	
e jq q q= + =cos sin2 2 1

	
(B.27)

Replacing θ by −θ in Equation B.25 gives

	 e jj- = -q q qcos sin 	 (B.28)

Adding Equations B.25 and B.28 yields

	
cosq q q= +( )-1

2
e ej j

	
(B.29)

Subtracting Equation B.28 from Equation B.25 yields

	

sinq q q= -( )-1
2 j

e ej j

	
(B.30)

The following identities are useful in dealing with complex numbers. If z = x + jy = 
r∠θ, then

	
zz z x y r* = = + =

2 2 2 2

	 (B.31)

	
z x jy re rj= + = = Ðq q/2 2/

	
(B.32)

	 z x jy r n r n j nn n n n= + = Ð = +( ) (cos sin )q q q 	 (B.33)
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	 z x jy r n k n k nn n n1 1 1 2 0 1 2 1/ / /( ) , , , , ,= + = Ð + = -q p/ / … 	 (B.34)

	 ln( ) ln ln lnre r e r j j k kj jq q q p= + = + + =2   ( integer) 	 (B.35)
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(B.36)

	

Re Re cos

Im Im

( )

( )

e e e e t

e e e

j t t j t t

j t t j t

a w a w a

a w a w

w+

+

( ) = ( ) =

( ) = ( ) = ee tta wsin 	
(B.37)

MATLAB handles complex numbers quite easily as real numbers.

Example B.1

Evaluate the complex numbers:

	 (a)	 z
j j

j j
1 2

3 4
1 6 2

=
-

- + +
( )*

( )( )

	 (b)	 z j e j
2

4 1 2
4 30 2 6= Ð ° + - +éë ùû

p / /

Solution

	 (a)	 This can be solved in two ways: working with z in rectangular form or 
polar form.

		  Method 1 (working in rectangular form):

		  Let z
z z
z z

1
3 4

5 6
=
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3 4 3 4
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		  Hence,
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		  Multiplying and dividing by −27 − j14 (rationalization), we have
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		  Method 2 (working in polar form):
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	 (b)	 Let
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Practice Problem B.1  Evaluate the following complex numbers:

	 (a)	 j
j
j

3

2
1
2

+
-

é

ë
ê

ù

û
ú

	 (b)	 6∠30° + j5−3 + ej45°

Answer: (a) 0.24 + j0.32, (b) 2.03 + j8.707
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Appendix C: Introduction 
to MATLAB®

MATLAB® has become a powerful tool of technical professionals worldwide. The 
term MATLAB is an abbreviation for MATrix LABoratory implying that MATLAB 
is a computational tool that employs matrices and vectors/arrays to carry out numeri-
cal analysis, signal processing, and scientific visualization tasks. Because MATLAB 
uses matrices as its fundamental building blocks, one can write mathematical 
expressions involving matrices just as easily as one would on paper. MATLAB is 
available for Macintosh, Unix, and Windows operating systems. A student version of 
MATLAB is available for PCs. A copy of MATLAB can be obtained from

The Mathworks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
Phone: (508) 647-7000
Website: http://www.mathworks.com

A brief introduction on MATLAB is presented in this appendix. What is presented 
is sufficient for solving problems in this book. Other information on MATLAB 
required in this book is provided on a chapter-by-chapter basis as needed. Additional 
information about MATLAB can be found in MATLAB books and obtained from 
the online help. The best way to learn MATLAB is to work with it after one has 
learned the basics.

C.1  MATLAB® FUNDAMENTALS

The Command window is the primary area where you interact with MATLAB. A lit-
tle later, we learn how to use the text editor to create M-files, which allow executing 
sequences of commands. For now, we focus on how to work in Command window. 
We first learn how to use MATLAB as a calculator. We do so by using the algebraic 
operators in Table C.1.

To begin to use MATLAB, we use these operators. Type commands to MATLAB 
prompt “≫” in the Command window (correct any mistakes by backspacing) and 
press the <Enter> key. For example,

≫ a = 2; b = 4; c = −6;
≫ dat = b^2 − 4*a*c
dat =
    64
≫ e=sqrt(dat)/10
e =
    0.8000

http://www.mathworks.com
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The first command assigns the values 2, 4, and −6 to the variables a, b, and c, 
respectively. MATLAB does not respond because this line ends with a colon. The 
second command sets dat to b2 − 4ac and MATLAB returns the answer as 64. Finally, 
the third line sets e equal to the square root of dat and divides by 10. MATLAB 
prints the answer as 0.8. As function sqrt is used here, other mathematical functions 
listed in Table C.2 can be used. Table C.2 provides just a small sample of MATLAB 
functions. Others can be obtained from the online help. To get help, type

≫ help

TABLE C.1
Basic Operations

Operation MATLAB Formula

Addition a + b

Division (right) a/b (means a÷b)

Division (left) a\b (means b÷a)

Multiplication a*b

Power a^b

Subtraction a − b

TABLE C.2
Typical Elementary Math Functions

Function Remark 

abs(x) Absolute value or complex magnitude of x

acos, acosh(x) Inverse cosine and inverse hyperbolic cosine of x in radians

acot, acoth (x) Inverse cotangent and inverse hyperbolic cotangent of x in radians

angle(x) Phase angle (in radian) of a complex number x

asin, asinh(x) Inverse sine and inverse hyperbolic sine of x in radians

atan, atanh(x) Inverse tangent and inverse hyperbolic tangent of x in radians

conj(x) Complex conjugate of x

cos, cosh(x) Cosine and hyperbolic cosine of x in radian

cot, coth(x) Cotangent and hyperbolic cotangent of x in radian

exp(x) Exponential of x

fix Round toward zero

imag(x) Imaginary part of a complex number x

log (x) Natural logarithm of x

log2(x) Logarithm of x to base 2

log10(x) Common logarithms (base 10) of x

real (x) Real part of a complex number x

sin, sinh(x) Sine and hyperbolic sine of x in radian

sqrt (x) Square root of x

tan, tanh Tangent and hyperbolic tangent of x in radian
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[a long list of topics come up]
and for a specific topic, type the command name. For example, to get help on log 

to base 2, type

≫ help log2

[a help message on the log function follows]
Note that MATLAB is case sensitive so that sin(a) is not the same as sin(A).
Try the following examples:

	

�

�

�

3 1025 6

2
3

4 1

^(log ( . ))

* sin

exp

y
pi

y

=

+ -

æ
è
ç

ö
ø
÷

( )

In addition to operating on mathematical functions, MATLAB easily allows one to 
work with vectors and matrices. A vector (or array) is a special matrix with one row 
or one column. For example,

	 � a = - -[ ];1 3 6 10 8 11 14

is a row vector. Defining a matrix is similar to defining a vector. For example, a 3 × 3 
matrix can be entered as

	 � A =[ ; ; ]1 2 3 4 5 6 7 8 9

or as

	

� A=[

]

1 2 3

4 5 6

7 8 9

In addition to the arithmetic operations that can be performed on a matrix, the opera-
tions in Table C.3 can be implemented.

TABLE C.3
Matrix Operations

Operation Remark 

A’ Finds the transpose of matrix A

det(A) Evaluates the determinant of matrix A

inv(A) Calculates the inverse of matrix A

eig(A) Determines the eigenvalues of matrix A

diag(A) Finds the diagonal elements of matrix A

expm(A) Exponential of matrix A
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Using the operations in Table C.3, we can manipulate matrices as follows:

	

� B A

B

= ¢

=
1 4 7

2 5 8

3 6 9

	

� C A B

C

= +

=
2 6 10

6 10 14

10 14 18

	

� D A B C

D

= -

=

^ *3

372 432 492

948 1131 1314

1524 1830 2136

	

� e

e

=

=

[ ]1 2 3 4

1 2

3 4

;

	

� f det e

f

=
= -

( )

2

	

� g inv e

g

=

=
-

-

( )
2 0000 1 0000

1 5000 0 5000

. .

. .

	

� H eig g

H

=

=
-

( )
2 6861

0 1861

.

.

Note that not all matrices can be inverted. A matrix can be inverted if and only if 
its determinant is nonzero. Special matrices, variables, and constants are listed in 
Table C.4. For example, type

≫  eye(3)

	

ans =
1 0 0

0 1 0

0 0 1

to get a 3 × 3 identity matrix.
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C.2  USING MATLAB® TO PLOT

To plot using MATLAB is easy. For two-dimensional plot, use the plot command 
with two arguments as

	
� ,plot xdata ydata( )

where xdata and ydata are vectors of the same length containing the data to be 
plotted.

For example, suppose we want to plot y = 10*sin(2*pi*x) from 0 to 5*pi, we will 
proceed with the following commands:

≫  x = 0:pi/100:5*pi; % x is a vector, 0 <= x <= 5*pi, increments of 
pi/100

≫  y = 10*sin(2*pi*x); % create a vector y

≫  plot(x, y); % create the plot

With this, MATLAB responds with the plot in Figure C.1
MATLAB will let you graph multiple plots together and distinguish with differ-

ent colors.
This is obtained with the command plot(xdata, ydata, “color”), where 

the color is indicated by using a character string from the options listed in Table C.5.
For example,

≫ plot(x1, y1, ‘r’, x2,y2, ‘b’, x3,y3, ‘--’)

will graph data (x1,y1) in red, data (x2,y2) in blue, and data (x3,y3) in dashed line all 
on the same plot.
MATLAB also allows for logarithm scaling. Rather that the plot command, we use

loglog	 log(y) versus log(x)
semilogx	 y versus log(x)
semilogy	 log(y) versus x

TABLE C.4
Special Matrices, Variables, and Constants

Matrix/Variable/Constant Remark 

eye Identity matrix

ones An array of ones

zeros An array of zeros

i or j Imaginary unit or sqrt(−1)

pi 3.142

NaN Not a number

inf Infinity

eps A very small number, 2.2e−16

rand Random element
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Three-dimensional plots are drawn using the functions mesh and meshdom (mesh 
domain). For example, to draw the graph of z = x* exp(−x^2−y^2) over the domain 
−1 < x, y < 1, we type the following commands:

≫ xx = −1:.1:1;
≫ yy = xx;
≫ [x,y] = meshgrid(xx,yy);
≫ z=x.*exp(-x.^2 -y.^2);
≫ mesh(z);

(The dot symbol used in x. and y. allows element-by-element multiplication.) The 
result is shown in Figure C.2.
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–8
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0 2 4 6 8 10 12 14 16

FIGURE C.1  MATLAB plot of y = 10*sin(2*pi*x).

TABLE C.5
Various Color and Line Types
y Yellow . Point

m Magenta o Circle

c Cyan x x-mark

r Red + Plus

g Green - Solid

b Blue * Star

w White : Dotted

k Black -. Dashdot

-- Dashed
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Other plotting commands in MATLAB are listed in Table C.6. The help com-
mand can be used to find out how each of these is used.

C.3  PROGRAMMING WITH MATLAB®

So far MATLAB has been used as a calculator, and you can also use MATLAB to 
create your own program. The command line editing in MATLAB can be inconve-
nient if one has several lines to execute. To avoid this problem, one creates a program, 
which is a sequence of statements to be executed. If you are in Command window, 
click File/New/M-files to open a new file in the MATLAB Editor/Debugger 

30
–0.5

0

0.5

20

10

0 0
5

10
15

20
25

FIGURE C.2  A three-dimensional plot.

TABLE C.6 
Other Plotting Commands

Command Comments 

bar(x,y) A bar graph
contour(z) A contour plot
errorbar (x,y,l,u) A plot with error bars
hist(x) A histogram of the data
plot3(x,y,z) A three-dimensional version of plot()
polar(r, angle) A polar coordinate plot
stairs(x,y) A stairstep plot
stem(n,x) Plots the data sequence as stems
subplot(m,n,p) Multiple (m-by-n) plots per window
surf(x,y,x,c) A plot of 3D colored surface.
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or simple text editor. Type the program and save the program in a file with an 
extension.m, say filename.m; it is for this reason it is called an M-file. Once 
the program is saved as an M-file, exit the Debugger window. You are now back in 
Command window. Type the file without the extension.m to get results. For example, 
the plot that was made above can be improved by adding title and labels and typed 
as an M-files called example1.m.

x = 0:pi/100:5*pi; % x is a vector, 0 <= x <= 5*pi, 
increments of pi/100

y = 10*sin(2*pi*x); % create a vector y
plot(x,y); % create the plot
xlabel(“x (in radians)”); % label the x-axis
ylabel(“10*sin(2*pi*x)”); % label the y-axis
title(“A sine function”); % title the plot
grid % add grid

Once it is saved as example1.m, we exit text editor, and type

≫  example1

in the Command window and hit <Enter> to obtain the result shown in Figure C.3.
To allow flow control in a program, certain relational and logical operators are 

necessary. They are shown in Table C.7. Perhaps, the most commonly used flow 

0 2 4

10
A sine function

10
*s

in
(2

*p
i*x

)

8

6

4

2

0

–2

–4

–6

–8

–10
6 8

x (in radians)
10 12 14 16

FIGURE C.3  MATLAB plot of y = 10*sin(2*pi*x) with title and labels.
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control statements are for and if. The for statement is used to create a loop or a 
repetitive procedure and has the general form:

for x = array
    [commands]
end

The if statement is used when certain conditions need to be met before an expres-
sion is executed. It has the general form:

if expression
    [commands if expression is True]
else
    [commands if expression is False]
end

For example, suppose we have an array y(x) and we want to determine the minimum 
value of y and its corresponding index x. This can be done by creating an M-file as 
shown as follows.

% example2.m
% This program finds the minimum y value and its corresponding 
x index
x = [1 2 3  4 5 6  7  8 9 10]; %the nth term in y
y = [3 9 15 8 1 0 -2  4 12 5];
min1 = y(1);
for k=1:10
   min2=y(k);
   if(min2 < min1)
      min1 = min2;
      xo = x(k);
   else
      min1 = min1;
   end

TABLE C.7
Relational and Logical Operators

Operator Remark 

< Less than

≤ Less than or equal

> Greater than

≥ Greater than or equal

= = Equal

~ = Not equal

& And

| Or

~ Not
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end
diary
min1, xo
diary off

Note the use of for and if statements. When this program is saved as example2.m, 
we execute it in the Command window and obtain the minimum value of y as −2 and 
the corresponding value of x as 7, as expected.

≫ example2
min1 =
    −2
xo =
    7

If we are not interested in the corresponding index, we could do the same thing using 
the command

≫  min(y)

The following tips are helpful in working effectively with MATLAB:

•	 Comment your M-file by adding lines beginning with a % character.
•	 To suppress output, end each command with a semicolon (;), you may 

remove the semicolon when debugging the file.
•	 Press up and down arrow keys to retrieve previously executed commands.
•	 If your expression does not fit on one line, use an ellipse (…) at the end of 

the line and continue on the next line. For example, MATLAB considers

	

y x x x

x

= + + + +¼
+

sin( log ( )) cos

log ( ));

(10 2 3

10 2 3

		  as one line of expression.
•	 Keep in mind that variable and function names are case sensitive.

C.4  SOLVING EQUATIONS

Consider the general system of n simultaneous equations as

	

a x a x a x b

a x a x a x b
n n

n n

11 1 12 2 1 1

21 1 22 2 2 2

+ + + =
+ + + =

�

�

� � �

	 a x a x a x bn n nn n n1 1 2 2+ + + =�
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or in matrix form

	 AX B=

where

	

A

a a a

a a a

a a a a

X

x

x
n

n

n n n nn

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

11 12 1

21 22 2

1 2 3

1

2

�

�

� � � � �
,

xx

B

b

b

bn n

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

,

1

2

�

A is a square matrix and is known as the coefficient matrix, while X and B are vec-
tors. X is the solution vector we are seeking to get. There are two ways to solve for X 
in MATLAB. First, we can use the backslash operator (\) so that

	 X A B= \

Second, we can solve for X as

	 X A B= -1

which in MATLAB is the same as

	 X A B= inv( )*

We can also solve equations using the command solve. For example, given the qua-
dratic equation x2 + 2x−3 = 0, we obtain the solution using the following MATLAB 
command:

≫  [x]=solve(‘x^2 + 2*x − 3 =0’)
 x =
 [−3]
[1]

indicating that the solutions are x=−3 and x=1. Of course, we can use the command 
solve for a case involving two or more variables. We will see that in the following 
example.

Example C.1

Use MATLAB to solve the following simultaneous equations:

	

25 5 20 50

5 10 4 0

5 4 9 0

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

- - =
- + - =
- - + =
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Solution

We can use MATLAB to solve this in two ways:

Method 1:
The given set of simultaneous equations could be written as

	

25 5 20

5 10 4

5 4 9

50

0

0

1

2

3

- -
- -
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú

x

x

x úú
=or AX B

We obtain matrix A and vector B and enter them in MATLAB as follows:

	

� A

A

=

=
- -

- -
- -

- - - - - -[ ]25 5 20 5 10 4 5 4 9

25 5 20

5 10 4

5 4 9

; ;

	

� B

B

=

=

[ ]50 0 0

50

0

0

¢

	

� X inv A B

X

=

=

( ) *
.

.

.

29 6000

26 0000

28 0000

	

� X A\B

X

=

=
29 6000

26 0000

28 0000

.

.

.

Thus, x1 = 29.6, x2 = 26, and x3 = 28.
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Method 2:
Since the equations are not many in this case, we can use the command solve to 
obtain the solution of the simultaneous equations as follows:

[x1,x2,x3]=solve(‘25*x1 − 5*x2 − 20*x3=50’, ‘−5*x1 + 10*x2 
− 4*x3 =0’, ‘−5*x1 − 4*x2 + 9*x3=0’)
x1 =
148/5
x2 =
26
x3 =
28
which is the same as before.

Practice Problem C.1  Solve the following simultaneous equations using 
MATLAB:

	

3 2 1

6 3 0

2 3 6 6

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

- - =
- + - =

- - + =

Answer: x1 = 3 = x3, x2 = 2.

C.5  PROGRAMMING HINTS

A good program should be well documented, of reasonable size, and capable of 
performing some computation with reasonable accuracy within a reasonable amount 
of time. The following are some helpful hints that may make writing and running 
MATLAB programs easier.

•	 Use the minimum commands possible and avoid execution of extra com-
mands. This is particularly true of loops.

•	 Use matrix operations directly as much as possible and avoid for, do, and/
or while loops if possible.

•	 Make effective use of functions for executing a series of commands over 
several times in a program.

•	 When unsure about a command, take advantage of the help capabilities of 
the software.

•	 It takes much less time running a program using files on the hard disk than 
on a floppy disk.

•	 Start each file with comments to help you remember what it is all about 
later.

•	 When writing a long program, save frequently. If possible, avoid a long 
program; break it down into smaller subroutines.
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C.6  OTHER USEFUL MATLAB® COMMANDS

Some common useful MATLAB commands, which may be used in this book, are 
provided in Table C.8.

TABLE C.8
Other Useful MATLAB® Commands

Command Explanation 

angle Phase angle
bode Plot bode plot
conj Complex conjugate
diary Save screen display output in text format
grid Provides grid lines for 2D and 3D plots
mean Mean value of a vector
min(max) Minimum (maximum) of a vector
grid Add a grid mark to the graphic window
poly Converts a collection of roots into a polynomial
polyfit Polynomial curve fitting
roots Finds the roots of a polynomial
sort Sort the elements of a vector
sound Play vector as sound
std Standard deviation of a data collection
step Unit step response
sum Sum of elements of a vector
title Plot title
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Appendix D: Answers to 
Odd-Numbered Problems

Chapter 1
1.1	 Proof.
1.3	 1/40.
1.5	 (a)	 energy signal, (b) neither power nor energy, (c) neither power nor energy.
1.7	 (a)	 x(t) = 10u(t)–15u(t−2) + 5u(t−4)
	 (b)	 y(t) = 2r(t)–2r(t−2)−7u(t−2)−3u(t−4)
1.9	 (a)	 x t e u t t e u t t u t

t

t t( ) ( ) ( . ) ( ) ( ) ( )

( .

= + - - - + - -
- -

- -10 2 5 10 10 4 5 40 8

2 5 300 12) ( )u t -
	 (b)	 See Figure D.1.
1.11	 Proof.
1.13	 (a)	 t −1, (b) 4.5, (c) 16, (d) 128.
1.15	 See Figure D.2.
1.17	 See Figure D.3.
1.19	 See Figure D.4.
1.21	 (a)	 1.353, (b) 27.18e3t, (c) 27.18e−0.75t, (d) 545.98cos3t.
1.23	 See Figure D.5.
1.25	 See Figure D.6.
1.27	 See Figure D.7.
1.29	 See Figure D.8.
1.31	 See Figure D.9.
1.33	 Proof.
1.35	 (a)	 Linear and time-varying system.
	 (b)	 Nonlinear and time-invariant system.
	 (c)	 Linear and time-invariant system.
	 (d)	 Nonlinear and time-varying system.
1.37	 (a)	 Nonlinear, (b) Nonlinear, (c) Linear.
1.39	 (a)	 Causal and memoryless, (b) Causal and memoryless.
1.41	 (a)	 Not time-invariant, (b) Time-invariant.

1.43	
di t

dt

i t

RC R

dv

dt
s( ) ( )+ = - 1

1.45	
dy

dt RC
y

RC
x+ =1 1

1.47	 See Figure D.10.
1.49	 See Figure D.11.
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4

3.24

2.624

–2.914

–3.6(a)

0 1 2 3 4 5 n

2
2.4

2.88

3.456

4.147

0 1 2
(b)

3 4 5 n

0.64

0.5657

0.362

0 1 2 3
(c)

4 5 k

FIGURE D.2  For Problem 1.15.

x΄(t)

10δ(t)

2.5

–10

0 4
–10e–t

–20δ(t– 8)

8 12 t

FIGURE D.1  For Problem 1.9(b).
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–4 –3 –2 –1 0
(a)

1

x[n]

x[n]

0 1 2 3
(b)

4 5 6 7 n

1 2

10

3 n

FIGURE D.4  For Problem 1.19.

–4 –3 –2 –1 0
(a)

(b)

2

1

1

–2 –1 0 1 3

–1

0.678

0.4571

–4 –3 –2 –1

–0.4571

–0.678(c)

0 1 2 3 4 n

0.522

4 n

2

1 2 3 4 n

2

FIGURE D.3  For Problem 1.17.
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0

1

5

x(t)

1 2 3 4 5 t
(a)

6

y(t)

(b)

2

1

–1 0 1 2 3 t

FIGURE D.5  For Problem 1.23.

x(t)

1

0

x΄(t)

δ(t)

–δ(t+1)(a)

1 t

0 1 t

  (b)

y΄(t)

δ(t– 1)δ(t + 1)

–1

–2δ(t)

0 1 t

y(t)

1

–1 0 1 t

FIGURE D.6  For Problem 1.25.� (Continued)
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y(t)

(b)

1

–3 –2 –1

–1

0 1 2 3 4 t

y(t)

(a)
–2 –1 0 1 2 3 4 5 t

1

FIGURE D.7  For Problem 1.27.

z(t)

z˝(t)

δ(t–1)

–δ(t+1)
(c)

1

1

1 t

–1 0 1 t

0–1

FIGURE D.6 (Continued)  For Problem 1.25.
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2

0 1
–1

–2(a)

3 4 5 6 7 n

1

x[n–3]

z[n]

4

2

–3 –2

–1

–1(b)

0 1 2 3 4 n

–1

1

2

FIGURE D.9  For Problem 1.31

h(t)

4

0 1 2 3 4 t

–4
(c)

y(t)

4

0

–4

–2 1 2 3 t

(a)

–1

z(t)

16

–4 –2 0

–16

2 6 t

(b)

4

FIGURE D.8  For Problem 1.29.
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Chapter 2
2.1	 Proof.
2.3	 Proof.

2.5	 (a)	
t

a
e

a

e

a
atat

at

( ) ( )- - - -1
1

12 2

	 (b)	 0.5cos(t)(t + 0.5sin(2t))–0.5sin(t)(cos(t)−1).
2.7	 See Figure D.12.
2.9	 10(e−t−e−2t)u(t)
2.11	 −e−2tu(t)

2.13	 (a)	
1
2

1 2-( )-e u tt ( )

	 (b)	 (e−2t−e−t)u(t)

	 (c)	
1
4

2 2 2cos sin ( )t t e u tt+ -( )-

2.15	 (a) unity system, (b) differentiator, (c) integrator.
2.17	 Proof.
2.19	 2(1−e−t),  t > 0

2.21	 y t

t t

t t( )

,

,

,

=
< <

- < <
ì

í
ï

î
ï

0 2

4 2 4

0 otherwise

t (ms)

co
s(

30
00

*p
i*t

)

0 1 2 3 4 5 6 7 8 9 10

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1

1

FIGURE D.10  For Problem 1.47.
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2.23	 (4e−t−e−2t)u(t)
2.25	 Proof.

2.27	 (a)	 y n u nn[ ] [ ]= -( )+1
3

4 11

	 (b)	 y[n] = 2n(n + 1)u[n]
	 (c)	 y[n] = 2n + 1(1.5n−1)u[n]

10

9

8

7

6

5

4

x[
n]

3

2

1

0
0

(a)
0.5 1 1.5 2 2.5

n
3 3.5 4 4.5 5

(b)

25

20

15

10

5

0
0 0.5 1 1.5 2 2.5

n

x[
n]

3 3.5 4 4.5 5

FIGURE D.11  For Problem 1.49.
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2.29	 y n

n

n

n

n

n

n

[ ]

,

,

,

,

,

,

,

=

=
=
=

- =
=

- =

ì

í

ï
ï
ï
ï

î

ï
ï
ï

1 0

0 1

1 2

1 3

0 4

1 5

0 otherwise
ïï

2.31	 y n[ ] [ ]= 0 1 3 6 5 3

–3 –2
(a)

–1 0

1

2

x(t)

t

y(t)

z(t)

1

0.5

–2 –1(c) 0 1 2 t

–2 –1 0

1

–1

(b)

1 2 t

FIGURE D.12  For Problem 2.7.
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2.33	 (a)	 y[n] = (n + 2) (0.4)nu[n] + 1.25(0.4)nu[n−1]
	 (b)	 y[n] = (n + 1) (0.4)nu[n] + n(0.4)n−1u[n−1]
2.35	 [2 3]
2.37	 (a)	 For y(t), see Figure D.13.

	 (b)	 y t
e t

e e t

t

t
( )

,

( ),
=

- < <
- >

ì
í
ï

îï

-

-

1 0 2

1 22

2.39	 See Figure D.14.

2.5
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1.5

1

0.5

0
0 5 10 15 20

n

y[
n]

25 30 35

FIGURE D.14  For Problem 2.39.
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FIGURE D.13  For Problem 2.37(a).
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2.41	 h = -[ ]2 8 8 16
2.43	 Stable.
2.45	 Not BIBO stable.
2.47	 vo(t) = 2(1−e−t)u(t)

Chapter 3

3.1	 (a)	
1

5 15 102

s
e es s- -- +( )

	 (b)	
1
2s

3.3	 (a)	
2 8
2

4

s s
e s+æ

è
ç

ö
ø
÷

-

	 (b)	 5cos2e−2s

	 (c)	
e

s

s- +

+

t( )1

1

	 (d)	 cos sin2
2

4
2

42 2t tt te
s

e
s

s
s s- -

+
+

+

3.5	 (a)	
1

1 2

s
e s( )- -

	 (b)	
1
3 2( )s +

3.7	 X s
s

e es s( ) = - +éë ùû
- -1

2 2

3.9	 f f( ) , ( )0 0 3= ¥ =
3.11	 (a) x(t) = u(t) + 2u(t−1)

	 (b)	 y t e et t( ) ( )= - +10
3

4

	 (c)	 z(t) = (e−tcos3t−e−tsin3t)u(t)

3.13	 (a) x(t) = (3e−tcos2t−e−tsin2t)u(t)
	 (b)	 y(t) = (4e−t−e−2t)u(t)
	 (c)	 z(t) = δ(t) + (e−2t−e2t)u(t)
	 (d)	 h(t) = 2t3e−2tu(t)
3.15	 y(t) = 8(t−1)u(t−1)−4(t−2)y(t−2)−2u(t−2)−6u(t−3)
3.17	 (a) h(t) = (2−e−2t)u(t)
	 (b)	 g(t) = 0.4e−3t + 0.6e−tcost + 0.8e−tsint
	 (c)	 f(t) = e−2(t−4)u(t−4)

	 (d)	 d t t t( ) cos cos= -10
3

10
3

2

3.19	 h(t) = δ(t)−4e−5tu(t)

3.21	 y t e e t e tt t t( ) cos sin= - + +- - -1
4

1
4

2
3
4

22
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3.23	 H
s as a b

=
+ + +

1
22 2

3.25	 H
G G G F

G F
= +

+
2 3 1 2

2 11
( )

3.27	 (a) H
s s

=
+ +

2
0 52 .

	 (b)	 y(t) = 4[1−e−0.5tcos0.5t−e−0.5tsin0.5t]u(t)

3.29	 y t e e e u tt t t( ) ( )= - +æ
è
ç

ö
ø
÷

- - -1
6

5
2

4
3

3 4

3.31	 y(t) = (1 + te−t)u(t)

3.33	 i(t) = (2e−2t−2e−2tcost + 2e−2tsint)u(t) = 2e−2t(1−cost + sint)u(t)

3.35	 H s
s s

s s
( ) = + +

+ +

2

2

2 1
3 1

3.37	 vo(t) = (11−11e−0.5tcos0.866t−6.351e−0.5tsin0.866t)u(t)

3.39	 I
s

s s s
I

s

s s s
1 2 2 2

2 2 1
1 3 1

2
1 3 1

= +
+ + +

=
+ + +

( )
( )( )

,
( )( )

3.41	 (a) Unstable, (b) stable, (c) unstable.

3.43	 (a) H s
s

s s
( ) = -

+ +
3

2 22

	 (b)	 h(t) = (e−tcost−4e−tsint)u(t)
3.45	 (a) x =

	 heaviside t( )- +2 1

	 (b) x =

	 t^2*exp(-t)

	 (c) x =
	 dirac(t) − exp(−2*t)*(cos(2*t) + (5*sin(2*t))/2)
3.47	 x =

	

heaviside t t / t /

heaviside t

( ) (exp( ) exp( ) )

( )

- * - * - - +

- - *

3 6 2 2 3 1 2

2 ((exp( ) exp( ))2 2 4 2- - * - *t t

3.49	 See Figure D.15.
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3.51	 (a)	 z =
	 2
	 p =

	

- +
- -

1 0000 3 0000

1 0000 3 0000

. .

. .
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i

	 (b) z =
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FIGURE D.15  For Problem 3.49 (a) impulse response, (b) step response.
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	 p =

	

0 0000 0 0000

2 0000 3 0000

2 0000 3 0000

. .

. .

. .

+
- +
- -

i

i

i

	 (c)	 z =
	 −9.4721

	 −0.5279

	 p =

	

- +
- -
- +

1 5956 2 2075

1 5956 2 2075

0 8087 0 0000

. .

. .

. .

i

i

i

3.53	 See Figure D.16.

Chapter 4

4.1	 x t
n

nt
n

( ) . sin= -
=

¥

å7 5
10

p
odd

4.3

	

a  ms,  rad/s

(b)

o( ) = =

= æ
è
ç

ö
ø
÷ =

T

a
n

n
bn n

5 1256 64

4
2

02

w

p

.

sin ,

4.5	 See Figure D.17.

4.7	 f t
n

n n t

n

n n t
( ) sin cos cos sin= + + -æ

è
ç

ö
ø
÷

é

ë
ê

ù

û
ú1

3 4
3

2
3

3
1

4
3

2
3p

p p
p

p p

nn=

¥

å
1

4.9	 c2 = - = = = - =- -
j

c
j

c c
j

c
j

o
8

3
8

0
3
8 8

1 1 2, , , ,

4.11	 c
e

jn
n

jn

=
-éë ùû

-

-( )

( )

1 1

2 1

p

p
4.13	 (a) 100, (b) 0, (c) 1.
4.15	 (a) T = 6.283s, ωo = 1 rad/s

	 (b) x t t t t( ) . . cos . cos . cos= + + +0 4 0 4 0 24 2 0 16 3

4.17	 v t
jV

n
n eo jnt

n

( ) (cos )= -
=-¥

¥

å 2
1

p
p

4.19	 (a)	 βn = c−n, (b) βn = cn, (c) b w
n n

jnc e o= - 3, (d) βn = jnωocn

4.21	 Proof.
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Bode diagram
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FIGURE D.16  For Problem 3.53.
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4.23	 (a)	 Even.
	 (b)	 Even.
	 (c)	 Even.
	 (d)	 Odd.
	 (e)	 Odd.
	 (f)	 Odd.
	 (g)	 Half-wave odd symmetric.
	 (h)	 Even.
4.25	 Proof.
4.27	 109 W.

4.29	 d
jV n

n
n

o= sin ( )2 2
4

p
p

/
/

4.31	 10%.

4.33

	

i t A n t

A
n n

o n n

n

n

( ) sin( ),

( )

= +

=
+ -

=

¥

å 2

10

25 2 50

1

2 2 2 2

p f

p p

     where

22

1
2 22 50
5

, tanf p
pn

n

n
= - --

4.35	 See Figure D.18.
4.37	 See Figure D.19.
4.39	 See Figure D.20.
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FIGURE D.17  For Problem 4.5.
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Chapter 5

	 5.1	 X
j

e e ej j j( )w
w

w w w= - - +( )- - -1
1 2 3

	 5.3	 (a)	X
j

e ej j( )w
w

w w= - +( )- -1
1 2 2

	 (b)	Y
j

( ) cosw
w

w== -( )2
1
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FIGURE D.18  For Problem 4.35.
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FIGURE D.20  For Problem 4.39.
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FIGURE D.19  For Problem 4.37.
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5.5	 Y j( ) ( cos )w
w

w= -4
12

5.7	 Proof.
5.9	 (a) X(ω) = 2π[δ(ω + ωo)e−jθ + δ(ω−ωo)ejθ]
	 (b)	 Y(ω) = 2π[δ(ω + 100)ejπ/4 + δ(ω−100π)e−jπ/4]

5.11	 (a) Y e
j

j
j( )

( )
.

.w w
w w

w= +
- + +

-1
4

10
0 25 1

2 5
2

	 (b)	Y
j j j j

j
( )

( )
( )

w w w w
w w

= + + -
- + +

2

2 2

10 2 9
2 1

	 (c)	 Y
j j

j

j

j
( )

( )
( ) ( )

( )
( ) ( )

w w
w w

w
w w

= + +
- + + + +

+ + -
- - + - +2

5 2
2 2 2 1

5 2
2 2 2 12 2

éé

ë
ê

ù

û
ú

	 (d)	  Y
j

j
( )

( )w w w
w w

= - +
- + +

2

2

5
2 1

5.13

	 (a)	 X
j

e j
1

0 52
4

2‘
.( / )w

w
pd w w( ) = +

æ

è
ç

ö

ø
÷

-

	 (b)	 X2( )
( )

( )
( )

( )w
w

pd w
w

pd w=
+

+ + +
-

+ -
é

ë
ê

ù

û
ú

1
2

2
1

1
2

1
1

j j

	 (c)	 X3( ) ( )w wpd w= +2 j
5.15	 Proof.
5.17	 See Figure D.21.
5.19	 Proof.

5.21	 (a) Proof, (b) (i) B = 2p
t

, (ii) B = 2p
t

.

5.23	 (a) See Figure D.22.

	 (b)	 X
e j ej j

( )w w
w

w w

= + -- - 1
2

5.25	 Proof.

5.27	 X
e j

( )w
w

w

= -
-

- 2

2

1
1

5.29	 (a) x t t e u tt( ) ( ) ( )= - -2 2d

	 (b)	 y t
t

( ) =
+( )

10

12p

	 (c)	 z(t) = (−2e−2t + 3e−3t)u(t)

5.31	 (a) y t
j

t t( ) cos sin= -( )25
4

2 2

	 (b)	 y(t) = 10e−2tu(t)
	 (c)	 y(t) = (5e−2t−5e−4t)u(t)
5.33	 y(t) = (e−2t−e−4t)u(t)
5.35	 i(t) = 5(e−t−e−2t)u(t)
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Y(ω)
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FIGURE D.21  For Problem 5.17.
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5.37	 H
j

j
( )w w

w
=

+
8

1 8

5.39 	H
j RC

j RC
( )w w

w
=

+1
,  highpass filter.

5.41	 H
j

j
h t e e u tt t( ) , ( ) ( ) ( )w w

w w
=

+
- + +éë ùû

= - +- -1

5 6
2

2
2 3

5.43	 Y X t X Xo o( ) ( )w w w w w= + +( ) + -( )2
1
2

1
2

5.45	 (a) 60 Hz, (b) 50 Hz
5.47	 66.67 J
5.49	 2010.62 J
5.51	 X = 

	

5
2 4

5
2 4wi i wi i+ -

+
+ +

	 The plot of |X(ω)| is in Figure D.23.
5.53	 See Figure D.24.
5.55	 See Figure D.25.

Chapter 6
	 6.1	 (a)	 Proof, (b) Proof.
	 6.3	 j2[sinΩ + sin2Ω + sin3Ω]

	 6.5	 (a)	
0 36

1 1 6
.

. cos- W
	 (b)	 2jsinΩk

	 (c)	
1
2

1
1 0 4

1
1 0 44 4-

+
-

é
ëê

ù
ûú- - - +. .( ) ( )e ej jW W

x(t)

0 1 t

FIGURE D.22  For Problem 5.23(a).
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FIGURE D.24  For Problem 5.53.
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FIGURE D.23  For Problem 5.51.
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6.7	 (a)	
1

1 0 6
2 2 2 2

-
- - - - + -éë ùû

=¥

¥

å.
( ) ( )

e
j k kj

k

W W Wp d a p d a p

	 (b)	
1

1 0 5
2 2 2 2 2

-
+ - - + + -éë ùû

=¥

¥

å.
( ) ( )

e
k kj

k

W W Wp d a p d a p

6.9	 (a)	
e

e a

j

j

( )1 3-

+

W

W

	 (b)	
e

e a

j

j

( )

( )

W

W

-

- +

4

4

	 (c)	
1
2

2

2

2

2j

e

e a

e

e a

j

j

j

j

( )

( )

( )
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W

W

W

W
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++
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é

ë
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ù

û
ú

	 (d)	
e

e a

j

j

W

W +
æ

è
ç

ö

ø
÷

2

6.11	 (a)	 y[n] = (1.25)nu[−n]
	 (b)	 z[n] = (−1)n (0.8)n x[n]
	 (c)	 w[n] = n(0.8)nu[n]
6.13	 (a)	 x[−2] = 3, x[0] = 1, x[4] = −2, x[5] = 1

	 (b)	 x n u n u n
n n

[ ] [ ] [ ]= æ
è
ç

ö
ø
÷ - - æ

è
ç

ö
ø
÷

+
1
2

1
1
2

1

	 (c)	 x[n] = 3cos(2n)
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FIGURE D.25  For Problem 5.55.
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6.15	 Proof.
6.17	 Proof.

6.19	
1

1 2

-
- -

a

ae

N

j k Np /

6.21	 (a) X[k] = [6−2 + j2−2−2−j2]

	 (b)	 X k j j[ ] [ ]= - +0 0 4 4 0 0 0 4 4 0
6.23	 Proof.
6.25	 x[0] = 1, x[1] = −0.5257, x[2] = −0.8507, x[3] = 0.8507, x[4] = 0.5257
6.27	 For DFT, 4,194,304. For FTT, 11,264.
6.29	 The plot is shown in Figure D.26.
6.31	 See Figure D.27.
6.33	 See Figure D.28.

Chapter 7
	 7.1	 (a)	 1 + z−1−z−2−z−3, (b) 1−z−1 + z−2−z−3

	 7.3	 (a)	 | |z < 3
2

, (b) | |z > 1
5

	 7.5	
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2 3

z

z

z

z
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>, | | /

	 7.7	 (a) 1, (b) 
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	 7.9	 (a)	
z za

z za a
o

o

2

2 22
-

- +
cos

cos
W

W
, (b) 

z z

z

( )
( )

+
-

1
1 2 , (c)

ze

z ze e

sin( )
cos( )

1
2 12 2- +

7

6

5

4

3

2

1

0
0 1 2 3 4

Ω

X(
Ω
)

5 6 7

FIGURE D.26  For Problem 6.29.
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FIGURE D.27  For Problem 6.31.
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7.11	 Proof.
7.13	 Proof.

7.15	
3

3
1
32

z

z

z

z( )-
+ +

-
7.17	 (a) 1, (b) 1.
7.19	 x[0] = 0, x[1] = 1, x[105] = −1
7.21	 y[n] = [1, −1, 5, 1, 2, 10, −7, −6]

7.23	 (a)	 6 12
1
2

18
1
3

d[ ] [ ] [ ]n u n u n
n n

+ -æ
è
ç

ö
ø
÷ - -æ

è
ç

ö
ø
÷

	 (b)	 2u[n]−2(0.5)nu[n]
	 (c)	 8δ[n]−10u[n] + 7nu[n]−2(2)nu[n]

7.25	
5
3

2
3

5
3

2
7

12
3d[ ] [ ] ( ) [ ] ( ) [ ]n u n u n u nn n- - - + -

7.27	 (a) (0.866)ncos(54.73on)u[n]−0.7072(0.866)nsin(58.74on)u[n]
	 (b) (0.8)ncos(60on)u[n] + 2.02(0.8)nsin(60on)u[n]
7.29	 y[n] = 2(0.6)ncos(146.4n)u[n] + 3.02(0.6)nsin(146.4n)u[n]
7.31	 y[n] = 3(2)nu[n]−2(1.5)nu[n]

7.33	 y[n]=
2
3

0 1491
1

6
114 1u n n u n

n

o[ ] . sin( . ) [ ]-
æ

è
ç

ö

ø
÷

7.35	 H z n
z

z

z

z
( ) [ ]

. .
= +

-
-

+
2

3
0 6

5
0 8

d

7.37	 Y z
z

z
( ) =

- 3

7.39	 ( )
( )

z
z z

+
-

-
-

é

ë
ê

ù

û
ú1

1
1

3
3 12

7.41	 (a) y[n] = 1.667u[n]−0.667(−0.2)nu[n]−0.8333(0.8)nu[n]
	 (b)	 y[n] = 0.5303(2)nu[n]−0.3636(−0.2)nu[n]−0.1667(0.8)nu[n]
7.43

	
y n u nn n[ ] . ( . ) ( ) [ ],= - -éë ùû0 3076 0 6 2

 
y n u nn n[ ] . ( . ) . ( ) [ ]= + - -éë ùû0 667 0 6 0 205 2

7.45	 x = 
	 (3/5)^n
7.47	 pole =

	

-
-

5 8284

0 1716

.

.

	 zero =

	

- +
- +
- -

2 8338 0 0000

0 0831 1 8767

0 0831 1 8767

. .

. .

. .

i

i

i

7.49	 Stable.
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